VAGABOND

The Design and Analysis of a

Temporal Object Database Management System

Kjetil N@rvag

Department of Computer and Information Science
Norwegian University of Science and Technology

2000

www.manharaa.com

www.manharaa.com

o AJLb

Abstract

Storage costs are rapidly decreasing, making it feasibs&ai@ larger amounts of data in databases.
However, the increase in disk performance is much lower thanincrease in memory and CPU
performance, and we have an increasing secondary storagssaoottleneck. Even though this is not
a new situation, the advent of very large main memory has madestorage approaches possible.

In most current database systems, data is updated in-plBzesupport recovery and increase
performance, write-ahead logging is used. This loggingidethe in-place updates. However, sooner
or later, the updates have to be applied to the databaseoftéisresults in non-sequential writing of
lots of pages, creating a write bottleneck. To avoid thigther approach is to eliminate the database
completely, and use lag-only approach, similar to the approach usedag structured file systems
The log is written contiguously to the disk, in a no-over@ntay, in large blocks.

This thesis presents the architecture and design of Vagitmotemporal object database man-
agement system (ODBMS) based on the log-only principle.ut®ols to problems regarding tem-
poral data management, fast recovery, efficient manageaidatge objects, dynamic reclustering,
and dynamic tuning of system parameters are provided. Tilades a new index structure for in-
dexing temporal objects, persistent caching of index esttd solve the object indexing bottleneck,
algorithms for transaction management, and declustetiagegies to be used in a parallel temporal
ODBMS.

In order to compare the log-only approach with the traddian-place update approach, analytical
cost models are used to study the performance of the apm@eadihe analysis shows that with the
workloads we expect to be typical for future ODBMSSs, the @wdy approach is highly competitive
with the traditional in-place update approach.

Many of the ideas presented in this thesis are also usefsidauthe log-only context. In pa-
pers included as appendixes, we show how the ideas can bedafptemporal ODBMSs based on
traditional in-place updating techniques.

www.manaraa.com

www.manharaa.com

o AJLb

Preface

This is a doctoral thesis submitted to the Norwegian Uniteeisf Science and Technology for the
doctoral degree “doktor ingenigr’. This work has been earut at the Database Systems Group,
Department of Computer and Information Science, at the grm@an University of Science and Tech-
nology, under the supervision of Prof. Kjell Bratbergseng&he doctoral study was funded by the
Norwegian Research Council (NFR).

Acknowledgments

First of all | want to thank my advisor Kjell Bratbergsengesr fjuidance and many good ideas
throughout the work towards my doctoral degree.

During the years | have worked on this thesis many people haiged me reach my goal. In
particular, 1 would like to thank Olav Sandsta for insighttliscussions, lots of valuable feedback,
and for taking the time to proofread this thesis as well as ayyeps. | also want to thank the other
members of the Database Systems group for providing a goadoement for doctoral students.
During the last two years | have been employed as a lectutéeiGroup for Computer Architecture
and Design, and | want to thank Lasse Natvig and Pauline Hadlaioproviding me the opportunity
to finish this thesis. | am also grateful to the departmerntisgs friendly and helpful administrative
staff.

| would also like to thank Prof. Malcolm Atkinson for many uable comments on the thesis.

Finally, | thank my family, who have always encouraged medsBhpport has been of great value.

www.manaraa.com

www.manharaa.com

o AJLb

Contents

| Overview 1
1 Introduction 3
1.1 Application Areas e e e 4
1.2 The Need for a New Architecture c.... 7
1.3 OutlineoftheThesis e 8
2 Object Database Management Systems 11
2.1 Whatis an Object Database System? 11
22 TheODMG Standard e 13
2.3 Object Database Systems e 14
24 SUMMANY . . . o o e e e e e 6
3 Design Issues 17
3.1 Objectldentifiers e 17
3.2 Object Storage Structure e 18
3.3 ObjectClustering 19
3.4 Client/Server Architectures e 20
3.5 Method Execution 21
3.6 DataGranularity e 23
3.7 BufferManagement e 25
3.8 Indexing 27
3.9 Swizzling 28
3.10 Query Processing 28
3.11 Parallel ODBMSS e 29
312 SUMMANY e e 33
4 Temporal Database Systems 35
41 WhatisaTemporalDBMS? 35
42 DataModels 35
4.3 Temporal Queries and Query Languages 37
4.4 Programming Language Bindings 38
45 MVacuumingo e AL
4.6 ImplementationIssues e 41
4.7 Temporal ODBMSs e 43
4.8 SUMMAIY o o e e e e e e 34

www.manaraa.com

i CONTENTS
5 Log-Only Database Management Systems 45
5.1 ThelLog-Only Approach 45
5.2 Advantages of aLog-Only Approach «.a.... 48
5.3 Alternative Realizations 50
5.4 Systems Based on Log-Only Related Techniques b51
55 Summary 4
I The Design of Vagabond 55
6 An Overview of Vagabond 57
6.1 Server Architecture e 57
6.2 ObjectsinVagabond 60
6.3 Read and Write Efficiency Issues 63
6.4 Parallelism and Distribution inVagabond 65
6.5 Summary e 6
7 Reducing the Data Transfer Volume 67
7.1 Signatures e e 67
7.2 Object Compression e e 72
7.3 SUMMANY o e e e e e 2
8 Object-ldentifier Indexing 73
8.1 Contents and Structure ofthe OID Indexo ... 73
8.2 Declustering 78
8.3 TemporalOIDIndexing 79
8.4 VTOIDX: The Vagabond Temporal OID Index 85
85 LargeObjects e 92
8.6 Reducingthe OIDXAccessCoOStS it iiinn . 98
8.7 Log-Basedvs. In-Place Updated OIDX oo 100
8.8 Object References and Remote Objects 102
8.9 Tertiary Storage Indexing e e 102
8.10 Summary e e e e e e e 103
9 The Persistent Cache 105
9.1 Introduction e 105
9.2 PCacheOrganization 107
9.3 LRUManagement e 107
9.4 Update Operations o i i e e 108
9.5 ObjectCreations e e 108
9.6 ReadOperations e 108
9.7 PCache-to-TIDX Writeback 109
9.8 PCacheand TIDX on Tertiary Storage o e o o 110
9.9 Summary e 101

www.manaraa.com

CONTENTS iii

10 Large Obijects in Vagabond 111
10.1 Why Special ObjectHandlers? 111
10.2 Special Object Handler Services iiie e 113
10.3 Examples of Special Objects 114
104 Summary e e e 115

11 Temporal Object Declustering 117
11.1 Introduction e 117
11.2 RelatedWork e 119
11.3 Object Declustering in Server Groups o vt i 120
11.4 Object Declustering in Distributed Systems 126
11.5 Summary e e e e e e 126

12 Log-Only Database Operations 129
12.1 Introduction e e 129
12.2 ObjectOperations o i i e 131
12.3 Transaction Management e 140
12.4 Controlled Shutdownand Restart, 143
125 Recovery e 143
12.6 Vacuuming o e e e e 145
12.7 SegmentCleaning e e i 146
12.8 SchemaManagement 152
12.9 ObjectMigration e e 152
1210 Backupo 153
12.11 Query ProCcessing o i i e e e e e 153
12.12 Volume Management e 153
12.13 Transparent Use of Tertiary Storage coie v v v v oo . 154
12.14 Node Operations i e e e 154
12,15 SUMMATNY o e e e e 155

13 Physical Data Structures 157
13.1 DataVolume Structures e e e 157
13.2 Memory Data Structures e e 162
13.3 Summary e e e e e 170

[l Analysis and Conclusions 171

14 Analysis of the Log-Only Approach 173
14.1 Analytical Modeling e 173
142 CostModel e 174
14.3 Object AccessModel e 175
14.4 The BDD LRUBufferModel 176
14.5 Assumptions Behind the ODBMS Models 188
14.6 Analytical Modeling of an IPU-ODBMS 191
14.7 Analytical Modeling of an LO-ODBMS 195
14.8 A Comparison of Performance e .. 196

www.manaraa.com

v CONTENTS

14.9 OIDX COStS ot e e 205
1400 SumMmMaAry e e e e e e e e 206
15 A Comparison of Declustering Strategies 207
15.1 CostModel 207
15.2 Analysis 213
153 Summary L e e e e e e e 217
16 Conclusions and Further Work 219
16.1 IsVagabond a Suitable Solution?, 219
16.2 Contributions and Publications e 221
16.3 CritiCisSm 222
16.4 Future Work o 223
IV Appendixes and Additional Papers 225
A SCCC'9%6 227
B BNCOD15 239
C DEXA98 257
D FODO'98 271
E VLDB'99 283
F ADBIS'99 297
G Validation of the Index Buffer Model 313
G.1 TheIndex Buffer Simulator 313
G.2 Results e e e 314
G.3 Related Work 315
G.4 ConcCluSIONS o e e e e 315
H Abbreviations 317
References 319

www.manaraa.com

List of Tables

2.1 ODBMSs and storage managers with language binding. 15
2.2 Object Relational Database Systems. 16
8.1 Contents and size of fields in the object descriptor. 75
13.1 Deviceinformationblock. L e 158
13.2 Checkpointblock. e 159
13.3 VWolumedevicetable. e 159
13.4 Segmentstructure. e e e e e e 161
13.5 Entry in the resident small objecttable. 167
13.6 Entry inthe segment statustable. 170
14.1 Partition sizes and partition access probabilities. L. 175
14.2 Partition sizes and partition access probabilitieshee books 176
14.3 Summary of system parameters and functions used inddelsn 189
14.4 IPU-ODBMS specific parameters and functions. 191
14.5 LO-ODBMS specific parameters and functions. 195
15.1 Summary of system parameters and functions. 208
G.1 Partition sets used in the index buffer validation. 313

www.manaraa.com

vi LIST OF TABLES

www.manharaa.com

List of Figures

3.1 OIDinObjectivity/DB e 18
3.2 Client/server architectures. e 20
3.3 Alternative parallel architectures., 30
5.1 Diskvolume structure. 46
5.2 Dataandindexinalog-only ODBMS. «.... 46
5.3 Segmentstates. e 47
5.4 POSTGRESfile. 51
55 POSTGRESDPage. o i 51
56 POSTGRESTrecord. e 52
5.7 LSMwith fourcomponents. 53
6.1 TheVagabondserver. e 58
6.2 Classdescriptor (CDO). e e e e 61
6.3 Vagabond system architecture. L e 65
8.1 OIDXwithcontainers. e 74
8.2 Distributed system, with server groups and servers. Y £°)
8.3 One-index structure using the concatenation of OID amainait tlme 81
8.4 One-index structure, with version linking. 83
85 NestedSTindexing i 84
8.6 TheVagabondtemporal OIDindex. e .. 85
8.7 Large object, linked listapproach L. 93
8.8 Versioned large object, linked-listapproach 93
8.9 Large object, pointer array approach 94
8.10 Large object, with subobject-index L. 95
8.11 LargeobjectinEXODUS e 95
8.12 \Versioned large object, single-level subobjectindex 96
8.13 Versioned large object, multi-level subobjectindex 97
8.14 Contents and size of fields in the subobject descrig@). 97
8.15 Index page bufferandOD Cache. 0o ... 98
8.16 Hybrid OIDX 101
9.1 Overview of the TIDX, PCache, and index-related maimrowy buffers. 106
11.1 Objectversionsversustime i 118
11.2 Two declustering strategies e 118
11.3 OlD-based declustering e 121

www.manaraa.com

viii LIST OF FIGURES

11.4 TIMEdeclustering 122
115 OID-TIMEdeclustering e e e 125
12.1 Exampleoflogwriting e . 130
12.2 Longtransaction. e 132
12.3 2-phasecommit e e e e 141
13.1 Datavolume 157
13.2 Important memory buffers L e 163
13.3 ODcache e 165
13.4 Block numberinginBSD-LFS 168
13.5 Large granularity bufferindexing L L. 169
14.1 Logical access partitions. e 174
14.2 TSIMarchitecture. e 178
14.3 OD cache hitrate forread only accesses. 181
14.4 OD cache hit rate with mixed workload. 182
14.5 OD cache hit rate with mixed workload. 183
14.6 Deviation between simulation and the DCOMP model 183
14.7 Deviation, differentwriterates. e e 184
14.8 Deviation, different object createrates.o oL 185
14.9 Deviation, different amounts of temporaldata. 186
14.10 Deviation, different amounts of dirty dataintheOBtwa 187
14.11 Throughput during different operational phases. 190
14.12 Object acCessS COSt. o e e 198
14.13 Speedup with different object siz&g,;. 199
14.14 Speedup with different update rat@giee. . . - . - 200
14.15 Speedup with different clustering factérs 201
14.16 Speedup from using compressioninan LO-ODBMS 202
14.17 Speedup with different checkpoint-interval lengths. 203
14.18 Speedup with diskread-ahead. 204
15.1 Costwith differentupdaterates 214
15.2 Cost with different objectsizes L. 215
15.3 Costwith differentread mix 216
G.1 Overall buffer hit probability with different bufferzes 314
G.2 Relativedeviation 314
G.3 Relative deviation, no traverse strategy isused 315

www.manaraa.com

Part |

Overview

o AJLb

www.manharaa.com

www.manharaa.com

o AJLb

Chapter 1

Introduction

The recent years have brought computers into almost evéigeptind this availability of powerful
computers, connected in global networks, has made it dessihutilize powerful data management
systems in new application areas. The increasing perfaceand storage capacity, combined with
a decreasing price, have made it possible to realize apiplsathat were previously too heavy for
medium- and low-cost computers. However, high performamzestorage capacity is not enough. We
need support software, including database managememinsysbperating systems, and compilers,
that are able to benefit from the advances in hardware. Ttaa ofieans rethinking previous solutions,
similar to what was done in the hardware world with the intrciibn of the RISC concept.

In this thesis, we concentrate on database managemeninsydBMS), quite likely to be the
bottleneck in many future systems. The first step in the @®oérethinking old solutions has already
been done, with the advent of object database managemésts{@DBMS)! While relational data-
base management systems (RDBMSs) have good performanmafgrof the traditional application
areas, new applications demand more than traditional RD86&& deliver. The increased modeling
power and removal of the language impedance mismatch in OB8kave made integration between
application programs easier, and in many cases helpedresise the performance of the applications.

Traditionally, data (objects/tuples) have lived in anfaitl, modeled world, after being inserted
into the database. This creates a mismatch in many waysasimilhe language impedance mismatch
in RDBMSs. What we would like, is DBMSs supporting a world meimilar to our own, which in-
cludestime and spaceThis is not at all a new observation, especially the aspetoporal database
management has been an active research area for many yeasevét, current database architec-
tures, which are adequate for yesterday’s applicationghtiiiave problems coping with tomorrow’s
application. In this thesis, we will reconsider some of wisdestablished truth”, and propose a new
architecture, thé/agabond Temporal Object Database Management Sysigich should be more
suitable for tomorrows applications.

Before we finish this section, it is very important to emphasihat some of the ideas in this
thesis are not new. However, many of the ideas did not haveosting framework when they were
proposed. Hence, many of the ideas are now forgotten. Orableogxception, is some of the ideas
from the POSTGRES system. POSTGRES included many noved,isdddch, because they where
incorporated into a system, managed to survive. UnforeipaPOSTGRES was in many ways too
early, and even though many of the elements of POSTGRESvsdrifto current object-relational
systems, some of the ideas we will concentrate on in thisghiiee the no-overwrite strategy, and

1The termobject-oriented database management sygl@@MDBMS) was previously used, but now the more precise
termobject database management system (ODBMS)gained acceptance.

www.manaraa.com

4 CHAPTER 1. INTRODUCTION

keeping previous versions, have later had little attentioDBMS research.

In the rest of this chapter, we will motivate the work thatIviie presented in the rest of this
thesis. In Section 1.1 we describe some application aredash#ve only limited support in existing
database system. Based on this discussion, we summarizea$dhe problems and shortcomings of
current systems in Section 1.2, and outline assumptiongeatdres that motivated the design of the
Vagabond system, which will be described in detail througttbe rest of the thesis. In Section 1.3,
we outline the structure of the rest of the thesis.

1.1 Application Areas

We can categorize application areas ietastingapplication areas, aneimergingapplication areas.
Existing application areas include the traditional dasgbareas, for example transaction processing
applications, well suited for RDBMSs. They also includelaggtion areas where application specific
DBMSs or file systems have been used earlier, because exiptineral purpose DBMSs can not
handle the performance constraints. Emerging applicatreas includes both new application areas,
that are emerging as a response to the increased computempence in general, and application
areas that are a response to other technologies, for exdhep&orld Wide Web.

We will in this section first describe some examples of emgstpplications where DBMSs until
recently have been a potential performance bottleneck:

e Geographical information systems.
e Scientific and statistical databases.
e Multimedia systems.

e PACS (picture archiving and communications systems).

Next, we will describe some applications where increaseddese support will be needed in order to
deliver the desired performance:

e Temporal DBMSs.

e Semistructured data management/XML.

Geographical Information Systems. A geographical information system (GIS) is a system for
management of geographical data, igafa which describes phenomena directly or indirectly as-
sociated with a location (and possibly time and orientatemwell) relative to the surface of the
Earth[34].

Earlier, GIS employed the DBMS (usually a RDBMS) to managsfélet data only, but used pro-
prietary file management systems to take care of geomearghtopological data. The main reason
for this, was that most RDBMSs did not support sequencesl€fed sets”), and retrieving polygons
from relations was (and still is) prohibitively expensiv&his is unfortunate, because the file man-
agement systems tend to be single-user, and there are sadtenmal access control as in DBMSs.
Recently, GIS have been built by extending database systéimspatial data types. However, these
ad-hoc solutions do not really address the main problengdkemodel: concepts are simple, the data

2Fact data is data describing the objects, e.g., the nameaaith but not the “road object” itself.

www.manaraa.com

1.1. APPLICATION AREAS 5

type system is weak, data have to be normalized in first nofamais while hierarchical structures
are needed, semantic links are lost and need to be rebulighrsemantic constraints, and the data
access system is very expensive because of joins [51].

With its increased modeling power, ODBMSs are ideal for Gdl@ations. They support com-
plex objects and relationships efficiently. However, soniEBB®™Ss do not have sufficient support for
large objects, and not all ODBMSs have a scalable architectu

Scientific and Statistical Databases. Scientific and statistical databases (SSDBs), for examyple s
vey data and data from physical experiments, have many degistics in common, which makes it
practical to consider them together:

e The size of the databases are usuadyy large.

e The update frequency is ofterery low The reason for this, is that the primary purpose of an
SSDB is to collect data for future reference and analysis.

e Bulk loading is frequently used to insert data into the dasab

e The read/write ratio can be low. Because of the size of thetdesie, summary data is often used
instead of the whole database in queries.

¢ Data in both scientific and in statistical databases areteatiy statistically analyzed.

e Complex relationships exist between data. For examplegraxents not only carry result data,
but also configuration and environmental data.

e Multidimensional data is frequent.

e Data is often sparse, i.e., many attributes have a NULL value

The size of SSDBs pose a problem for many DBMSs, and the comelationships make a data
model with high modeling power desirable. Traditional sys$ do not support multidimensional data
well, and in the case of sparse data, efficient support forpression is necessary. This does not only
include support for compression and decompression itigetfalso efficient access and manipulation
of compressed data.

In analysis, statistical operators are needed. These anmeahaded in traditional systems. Another
important feature in practical SSDBs, is bulk loading, whiew systems handle well.

Database research and development is highly market drawsh,until very recently, the active
research in this area was very limited. This has changed atreally the last few years, with the
increased interest in data warehousing/OLAP, which has/rainilarities with SSDBs.

Multimedia Systems. Multimedia data management differs from traditional da@nagement in
several ways:

e Large objects, for example images and videos, are commogeneral, there are sufficiently
many large objects stored in such a database to make theltdéddase size large as well.

e New and complex data types.

e New types of queries. One example is query by contents, an@tlgueries on image charac-
teristics (for example on image histograms).

www.manaraa.com

6 CHAPTER 1. INTRODUCTION

¢ Isochronous retrieval: In the case of dynamic data, likewejdlata is to be delivered in pieces
of the object at regular time intervals, and not the wholecbat once. The scheduling of this
data delivery is complicated, as is witnessed from deditaigeo servers, which do not have
to care about the other database aspects.

Even though some vendors define all databases capableinfidnge objects as multimedia DBMS,
the fact is that current DBMSs have only limited support farltimedia data, and this is particularly
true for isochronous delivery of the data stored in the dadab

Picture Archiving and Communications Systems. Picture archiving and communications systems
(PACS) will be an important part of tomorrow’s health care.tthe future different kinds of data will
be stored in such systems, but currently most systems ctvateion storage of pictures, for example
X-ray pictures. The pictures stored in these systems argrestjto have a high resolution, and with
the number of pictures to be stored in such a system the dettaioze will be very large. The historical
data in a PACS system will be very infrequently accessedcancbe stored in tertiary storage.

Temporal Database Management Systems.A temporal DBMS is a DBMS that supports some
aspects of time. Informally, this means that an object (apéed is associated with time, and that the
object can exist in several versions, each version beird wrah certain time interval. An example is
the salary of a person. If the salary is represented as a r@ggect, a new object version is created
every time the salary is changed. In a temporal DBMS, thisigaing, related to time, is supported
and maintained by the system, which also provides suppogduerying the temporal data.

The temporal aspect exists in most real life databases,engane or all of the data is associated
with some aspect of time. Examples include:

e Accounting: What bills were sent out and when, and what paysheere received and when.

e GIS: The geography, such as rivers, and the existence, stmapgize of objects such as houses
and roads, change over time.

e Stock marked data.

e Patient records.

e Personnel information, including salary histories.
e Airline reservation systems.

¢ In scientific DBMSs, timestamping of data is important, fgaeple for data from an experi-
ment that is repeated several times.

We will give a more detailed introduction to temporal DBM&<hapter 4.

Semistructured Data Management/XML. A very active research area at the momenggmistruc-
tured data managemertiemistructured data is data where the information thatisatly associated
with a schema, is containedthin the data In some forms of semistructured data there are no separate
schemas, in others it exists, but only places loose congiraf the data [35].

The main reasons for the heavy interest in semistructured aiee its application in data ex-
change/data integration, and the large amount of semigtec data available on the Web. Research

www.manaraa.com

1.2. THE NEED FOR A NEW ARCHITECTURE 7

in semistructured data management has recently been dosieehon the theory of semistructured
data; models, query languages, but less on physical mamaenseveral approaches have been
taken in incorporating the ideas on top of traditional ODBdVI®r example on @[2], but only a
few systems have been specially designed for semistruttlata. One example of such a system is
Lore [138].

ODBMSs are very appropriate for semistructured data managg as their underlying model
has many similarities with most semistructured data modetsexample the Object Exchange Model
(OEM) [3]. However, some features not provided by most axisODBMSs are desired. One ex-
ample is query languages suitable for semistructured dathappropriate optimization techniques.
If these DBMSs should deliver reasonable performance, melexing techniques are also needed,
including full text indexes.

As pointed out by Abiteboul [1], we are often more concerngdjberying the recent changes in
some data source than in examining the entire source. Sujgpaemporal data in the storage layer
would facilitate this, and this can also be useful in distrddl DBMSs where data is exchanged in
bulk at regular intervals.

1.2 The Need for a New Architecture

Based on the discussion in the previous section, we haveifiddnsome features that should be
supported by future database systems:

e Temporal data and operations on these.

Large objects and flexible partitioning of large objects.
e Isochronous delivery of data.
e Queries on large data sets.

¢ In applications with low read/write ratio, it should be pitds to use this characteristic to in-
crease performance.

e Full text indexing.
¢ Multidimensional data.
e Efficient storage of sparse data (for example by the use af danhpression).

e Dynamic clustering and dynamic tuning of system parameters

Until now, no single existing system has supported all tHes¢ures. Ad-hoc solutions exist for
some of the features, but these are often not scalable, bnetilvork well together with support for
the other features. We believe that future systems shofiltlegitly support these features, ame
integrated systemln this thesis, we show how this can be done, through theydesfithe temporal
ODBMS Vagabond. Vagabond is designed to support the listed features, withilagpphy based on
the following assumptions:

3FromWebster’s Encyclopedic Unabridged Dictionalagabond: “a person, usually without a permanent home, who
wanders from place to place; nomad”. Quite similar to oueoty!

www.manaraa.com

8 CHAPTER 1. INTRODUCTION

1. Although many of the current problems might be handled liyre main-memory database
management systems (MMDBMSS), there are many problemsr{enmd will appear, as the
computers become powerful enough to solve them) that reghie management of larger
amounts of data than can be handled by a MMDBMS alone. Howtemcreasing amounts
of main memory should be utilized as far as possible in ordeetluce time consuming sec-
ondary storage accesses.

2. The main bottlenecin a DBMS for large databases is still secondary storagesaccén a
DBMS, most accesses to data are read operations. Conslggdetdbase systems have been
read-optimized However, as main-memory capacity increases, we expectitbamount of
disk-write operations relative to disk-read operationk wcrease (most read operations can be
satisfied from the main-memory buffer). This calls for a feamwrite-optimizedDBMSs.

3. To provide the necessary computing powed data bandwidth, a parallel architecture is nec-
essary. A shared-everything approach is not scalable, spronary interest is in ODBMSs
based on shared-nothing multicomputers. With the advehigbf performance computers, and
high speed networks, we expect multicomputers based on calityrworkstations/servers and
networks to be most cost effective.

4. In most application areas, there is a need for increasedb@adwidth, and not only increased
transaction throughput (although these points are rélatddhis is especially important for
emerging application areas such as multimedia and supeuaong applications, which have
earlier used file systems.

5. Even though set-based queries have been a neglectetefeatnost ODBMSSs, we expect it
to be as important in the future for ODBMSs as it has been pusly for RDBMSs. The
popularity of the hybrid object-relational systems jussfithis assumption.

6. Distributed information systems are becoming increglgicommon, and they should be sup-
ported in a way that facilitates both efficient support fatdbution,and efficient execution of
local queries and operations.

1.3 Outline of the Thesis

The thesis is logically divided into four parts. The firstip&hapter 2 to 5, is mainly an introduction
to ODBMSs and ODBMS implementation issues, temporal DBMS,the log-only approach.

e Chapter 2describes the most important features of ODBMSs, gives arviaw of the ODMG
standard, and outlines the history of ODBMSs.

e Chapter 3discusses design issues in ODBMSs.
e Chapter 4gives an introduction to temporal DBMSs in general.

e Chapter 5gives an introduction to log-only DBMS, and a short overvieiprevious systems
based on the log-only approach.

In the second part, the architecture of the Vagabond log-DBMS and the most important algo-
rithms are described in detail.

www.manaraa.com

1.3. OUTLINE OF THE THESIS 9

e Chapter 6describes the architecture of the Vagabond temporal ODBMS.

e Chapter 7discusses two techniques for reducing the data transfamal signatures and object
compression.

e Chapter 8studies the problems of indexing object identifiers (OlDspitemporal ODBMS,
and proposes a new indexing structure suitable for this task

e Chapter 9introduces a novel structure called tRersistent Cachewhich reduces the OID
indexing cost.

e Chapter 10gives a more detailed description of large objects and tissrin Vagabond.
e Chapter 11discusses object declustering in parallel and distribteetporal ODBMSs.
e Chapter 12describes the most important operations in Vagabond.

e Chapter 13describes the most important physical data structures gahand.

In the third part, log-only database systems are comparaigtasally with traditional in-place updat-
ing ODBMSs, and we conclude the thesis.

e Chapter 14contains analytical models of a log-only ODBMS and an ireplapdate ODBMS,
and uses these models to compare the hypothetical perfoewdrhe two approaches.

e Chapter 15contains a qualitative analysis of the declustering gragediscussed in Chapter 11.

e Chapter 16concludes the thesis and outlines directions for furtheeaech.

The fourth part, Appendix A to F, is a compilation of paperatttiscuss issues not covered in detail
by the main part of the thesis. The four last papers show hewesults of the main part of the thesis
are also applicable for temporal ODBMSs based on traditimwaniques.

e The paper “Aggregate and Grouping Functions in Objectei¢ Databases”, presented at
SCCC’96, is included in Appendix A.

e The paper “Improved and Optimized Partitioning TechnigimeBatabase Query Processing”,
presented at BNCOD’97, is included in Appendix B.

e The paper “An Analytical Study of Object Identifier Indexingresented at DEXA9S, is in-
cluded in Appendix C.

e The paper “Optimizing OID Indexing Cost in Temporal Objéxntented Database Systems”,
presented at FODO’98, is included in Appendix D.

e The paper “The Persistent Cache: Improving OID Indexinggmporal Object-Oriented Data-
base Systems”, presented at VLDB’99, is included in Appeidi

e The paper “Efficient Use of Signatures in Object-Orientedabase Systems”, presented at
ADBIS'99, is included in Appendix F.

In Appendix G we present a validation of the index buffer maged in the papers in Appendix C, D, E,
and F. In addition, a list of abbreviations used in this thésprovided in Appendix H.

www.manaraa.com

10 CHAPTER 1. INTRODUCTION

www.manharaa.com

Chapter 2

Object Database Management Systems

Relational database management systems (RDBMS) haveitienited database management dur-
ing the last 20 years. Important reasons for the successreghd the ability to efficiently perform
queries over large amounts of data. However, RDBMSs aredbasea simple data model. Even
though this gives high performance for many typical dataeeal applications, the result can often
be very low performance in applications managing data waimglex relationships. For example,
until very recently it was impossible to design a GIS systémsed on traditional RDBMS technol-
ogy! In addition, in many applications with high transactiontesa systems based on hierarchical
and network data models have continued to be used.

For some application areas, a more complex data model and fat data manipulation, rather
than data retrieval, is desired. Typical examples of sucesys have been GIS, CAD, software
development systems and more recently also Web databasesy applications also need to do
complex operations on the data. In a typical RDBMS, this bdsetdone by accessing the database
from the application program by using database commandeedeil in some general programming
language. Thisanguage impedance mismatshcostly and inefficient.

Object database management systems (ODBMS), previouidy cdject-oriented database man-
agement systems, emerged as an answer to the shortcomipgavimfus models and systems. The
rest of this chapter will give an introduction to ODBMS, and will start by defining the terrbject
database management system (ODBMShe next section. An overview of the world of ODBMS
would not be complete without an overview of the contentshef ®DMG standard, which is given
in Section 2.2. To set our work into perspective, we briefl{lioa the history of ODBMSs in Sec-
tion 2.3, from the first approaches in persistent prograngni@mguages, via storage managers, to
today’s commercially available ODBMSs. We also give a boxerview of object-relational database
management systems (ORDBMS).

2.1 Whatis an Object Database System?

As is obvious from the ODBMS research prototypes and comiar@available ODBMSs, the de-
sign space for an ODBMS is much larger than for RDBMSs. Howetere are some features and
characteristics shared by most of them, initially desaibeThe Object-Oriented Database System
Manifestoby Atkinson et al. [6]. We will now summarize the most impaoittéeatures, separated into
language related features (the OO part), and the databaiseds (the DB part).

A notable exception is Techra [204], which over a decade agluded support for GIS data management, including
sequences.

www.manaraa.com

12

CHAPTER 2. OBJECT DATABASE MANAGEMENT SYSTEMS

Language features:

e Complex objects. The ability to build complex objects fromgler ones by applying construc-
tors to them. Complex object constructors include tuplets, 9ags, lists, and arrays.

e Object identity. All objects have a system managed idetii&y is independent of the value of
the object. The identity is assigned by the system, can nattbeed by the user, and remains
the same even when the value of the object changes.

e Encapsulation. Encapsulation is used to distinguish betwike specification and the imple-
mentation of an operation. No operations, outside thoseifsge: in the interface, can be per-
formed. This restriction holds for both update and retdeyzerations.

e Types or classes. Types or classes should be supported. DMEGGstandard encapsulates
both, and the language binding used decides to what extess toncepts are supported.

e Class or type hierarchies. Inheritance is a powerful modeiool, because it gives a concise
and precise description of the world, and it helps in faciprout shared specifications and
implementations in applications.

e Overriding, overloading and late binding. This is the cqriad having several implementations
of an operation, for each of the types. Which implementatiionse, is decided at run-timiate
binding

e Computational completeness. To avoid the language impedaismatch, the data manipula-
tion language should be computationally complete.

e Persistence. Persistence is the ability of the programmbave her/his data survive the exe-
cution of a process, in order to eventually reuse the dataather process. Persistence should
be orthogonal, i.e., each object, independent of its typallowed to become persistent as
such (i.e., without explicit translation). It should alse implicit: the user should not have to
explicitly move or copy data to make it persistent.

Database features:

e Secondary storage management. Database mechanisms»amigmaiggement, data clustering,
data buffering, access path selection and query optiroizatould be invisible to the user: they
are simply performance features. There should be a cleapgntience between the logical and
the physical level of the system.

e Concurrency and recovery. The system should offer the sawed bf service as traditional
database systems, i.e., atomicity and controlled sharlmgnvmultiple users access and update
data. The same applies to recovery, in case of hardware wvageffailures, the system should
recover, i.e., bring itself back to a consistent state.

e Ad-hoc query facility. The system should provide functilityaof an ad-hoc query language,
though not necessarily as an own query language. This isaplplthe feature where current
ODBMSs differ most. While some systems, like, offer a SQL like language (OQL), with
query optimization similar to RDBMSs, other systems onlgvide primitive scan operations.

www.manaraa.com

2.2. THE ODMG STANDARD 13

The Manifestoalso lists some additional features, the most importamgdsupport fordistribu-
tion, design transactiong‘long” transactions) and versioning. These features aremandatory
to make a database system an object-oriented system, lutefedhat are desired in many of the
typical ODBMS applications. Thus, these features are stpgdo some extent in most commercial
ODBMSs.

2.2 The ODMG Standard

ODBMS is now a relative mature technology, and commerciaB®I3s have proved to be competi-
tive with RDBMSs in many application areas, and superiortiress. They have been able to deliver
high performance and provide high availability. Still, fheave not managed to seriously threaten the
traditional RDBMSs.

There are several reason why the ODBMS market segmentlisrsall, but one important factor
has been lack of standardization. One important reasohéauccess of the RDBMSs, is the common
data model and the common data specification and manipul&imuage. This was realized by
the ODBMS vendors in the early 90’s, and ibject Database Management Group (ODMEs
formed in 1991 to develop and promote standards for objecage. The participants of the ODMG
includes representatives from all major ODBMS vendors. €R#y, the focus of the ODMG have
been broadened, and the name changed tO@tiect Data Management Group

2.2.1 The Components of the ODMG Standard

The components of the ODMG standard [43] are built upon thévi@Dobject model, which is a
superset of the OMG object model. The specification coveesthreas:

e Object definition language (ODL).
e Object query language (OQL).

e Language bindings.

Object Definition Language. ODL is in fact a syntax of the object model, and is a superset of
OMG'’s IDL. It can be used to define a database schema in a pnogireg language independent
manner in terms of object type, attributes, relationshipd @perations. The resulting schema can be
moved from one database to another. The schema of an applican be translated to declarations
in different programming languages. These schemas carcheled in the application code.

Object Query Language. OQL is a declarative query language, and is a superset ofdheop
SQL that deals with database queries. It includes suppodtject sets and structures, and has object
extensions to support object identity, complex objectsh mxpressions, operation invocation, and
inheritance.

Language Bindings. ODBMSs are accessed through languages with support fastrsobjects,
usually extensions of existing general purpose prograrmgr@inguages. The ODMG language bind-
ings define extensions to the languages to support and atée@QL, navigation and transactions.
Currently, language bindings for C++, Java and Smalltallelizeen standardized.

www.manaraa.com

14 CHAPTER 2. OBJECT DATABASE MANAGEMENT SYSTEMS

2.2.2 The ODMG Standard in Practice

The ODBMS vendors have been slow at adopting the ODMG stdndad unfortunately, they cur-
rently seem even less eager to do so. Vendors can claim camopliwith one or more components
of the ODMG standard, i.e. one or several of the C++/Javall&tkalanguage bindings, and OQL.
Even though many vendors claim that their systems are ODM®@ptiant, the lack of certification
procedures is a problem. The only vendor close to suppottisgvhole standard wass, which is
no surprise, as the standard itself, especially OQL, baetbheavily fromO,. However, the); is no
longer on the market.

Currently, there seems to be little interest in continuedkwan the ODMG object model, OQL,
and the language bindings. The model is only used in the ODp#8ification itself, the ODBMS
vendors prefer to use their proprietary C++ language bigglimnd OQL has only limited support.
Most of the interest at the moment is in the Java binding afectielational mappings, and it is very
likely that future work will be in these directions.

2.3 Object Database Systems

To set our work into perspective, we briefly summarize presiovork on ODBMSs. We have sum-
marized all implemented systems we are aware of in Table Phils summary is provided for two
reasons. First of all, we want to show that ODBMSs have beegictive research area, and still is.
Second, we provide the summary with references, to maksiger others to probe earlier works, as
we are not aware of any other published summary or surveggrg cover the implemented systems.
In this summary, we classify the systems in three groups:

e Early approaches.
e ODBMSs and storage managers with language binding.

e ORDBMSs.

For the commercial systems, the publications cited do noesearily represent descriptions of the
current versions of the commercial systems. For infornmatio current versions of the systems and
their features, the reader is encouraged to visit the Wek sit the respective ODBMS companies.

2.3.1 Early Approaches to Persistent Programming Language

Traditionally, users and applications have communicatét the database system through special
data definition languages (DDL) and data manipulation laggs (DML). Operations on tuples have
been done with some predefined functions. If more advancedatpns were desired, a general
purpose language with embedded database language fuetene used. With this approach, you
get a language impedance mismatch.

To avoid the language impedance mismatch, new systems waloded. In these systems, there
were no distinction between database (persistent) anctaidse (transient) data, the same language
is used for both. The first such systems were ASTRAL [32, 38] BASCAL/R [181]. Later, other
systems followed, for example PS-algol [49]. In the nextgghaf the evolution, persistent versions
of Smalltalk and persistent C++ became popular, used in cwatibn with the storage managers
summarized in the next section.

www.manaraa.com

2.3. OBJECT DATABASE SYSTEMS 15

Name Referenceg| Name References
AGNA [145] 0O, [7, 53, 165]
Amadeus | [80, 203] Obijectivity [167]
BeSS [17] ObjectStore [118, 171]
Bubba [28] OBST [42]
Cricket [186] ODB-lI [168]
Dali® [99] ODE [71]
DASDBS [180] ONTOS

Eiffel** [137] ORION [112]
Encore [89] OSAM* KBMS/P | [201]
EOS [81] PJama [175]
EXODUS | [38] Poet

EyeDB PPOST [22]
GemStone | [37, 133] PRIMA [74, 75]
ITASCA [97] Ptool [79]

Iris [68, 215] QuickStore [214]
Jasmine [95] Shore [39]
KIOSK [146] Texas [189]
Lumberjack| [92] Thor [128, 130]
MATISSE | [134] Tycoon [135]
Mneme [140, 142] || Versant

Monet [26, 27] VODAK [115]

Table 2.1: ODBMSs and storage managers with language lgindin

2.3.2 ODBMSs and Storage Managers with Language Binding

After the first attempts with database programming langsaggstems more closely resembling what
we today call object database management systems enterestehe. In many of these systems,
the focus was more on persistent programming than databasagement, and as a result, many of
these system have only a very primitive query language \ifamll. However: all systems share one
important goal, removing the language impedance mismatch.

The number of ODBMSs and storage managers with languagénbirisl quite large, and the
implemented systems we are aware of are summarized in TableMost of the systems are only
research prototypes, but some of them are commercializeBNIDEs: GemStone, Itasca, Jasmine,
MATISSE, O, Objectivity, ObjectStore, ODB Il, ONTOS, Poet, and Vetsan

Several systems are marketed as ODBMSs, but are not inclodeble 2.1. The reason for not
including theses, is that they either lack some of the mopoitant features expected from ODBMSs
(they would more correctly be classified as object file marsage indexing tools), or that we have
only limited information about the systems. The systemstteohifrom the summary include Ac-
tivelnfo, GOODS/POST++, Jeevan, Neoaccess (NeoLogicjedifile (ObjectFile Ltd.), OOFILE
(A.D. Software), Persist (Persist AG), PLOB! (PersisteisplOBjects, from University of Hamburg),
Tenecit (Totally Objects), and TERSOL (TechKnowledge).

In addition, several systems use one of the systems in Tabla2the storage manager in the
system. This includes AllegroStore, which combines Olgtme with CLOS (Common Lisp Object
System), Multicomputer Texas [18] (described in Sectidlil3), which uses Texas as the storage

www.manaraa.com

16 CHAPTER 2. OBJECT DATABASE MANAGEMENT SYSTEMS

Name References

DB2 [41]

lllustra/Informix Universal Serve

Oracle 8

POSTGRES [195, 200, 197, 198]
Starburst [85, 131]

UniSQL

Table 2.2: Object Relational Database Systems.

manager in a parallel ODBMS, and Open ODBMS [20] and METU OD®B[g8], which both were
developed on top of the Exodus storage manager.

2.3.3 Object-Relational Database Systems

ORDBMSS carry on the relational paradigm. Data is still organizeddrations, but the systems
offer additional features, including support for more cdexpdata types, and large objects. The most
well-known of these are summarized in Table 2.2.

The history of ORDBMSs started with POSTGRERBter commercialized into lllustra/Informix
Universal Server. Currently, most major RDBMS vendors hextended their products to support
object-relational features. Some ODBMSs, included in &@&bl, have also been marketed as object-
relational, or have features that make it possible to diasbem as object-relational, for example
MATISSE and ODB-II.

Itis possible to implement an ODBMS on top of an ORDBMS badkemd vice versa. Examples
are Paradise [55, 173], which uses Shore [39] as its undegriyérsistent object manager, and several
commercial products that offer Java and C++ language biysdon top of ORDBMSs. Based on
this observation, one might think that the division of ODBM&d ORDBMS is atrtificial, and that
the ODBMS vs. ORDBMS discussion is more a debate on whafaweito make available for users
and programmers. It is important to note that this is not @meec While such approaches deliver the
functionality, they are in general not efficient and scadadgbproaches.

2.4 Summary

We have in this chapter described the most important fesif© DBMSS, given an overview of the
ODMG standard, and provided an overview of previous andtiiegi<ODBMSs. Although we have
tried to make the overview as complete as possible, we ayedulare that the list is not complete:
many projects have been completed without any publicatiforte, and new systems are developed
and marketed as this thesis is written.

2Dali has now been commercialized, and renaathblitz.

Object relational database systems were previously cakezhded relational database systems

A “cleaned up version” of POSTGRESBpstgreSQLis continuously under development by “the public domaimeo
munity”.

www.manaraa.com

Chapter 3

Design Issues

The design of an ODBMS introduces new issues not found in RBBMEach design issue may have
alternative solutions, and few have definite answers. Mdrthem are also highly related, one of
the alternatives for one issue can rule out alternativestioer issues. In this chapter, we discuss the
most important issues, and provide a background for therigi¢isn of Vagabond. This chapter also
establishes the terminology which will be used in the reshizfthesis.

3.1 Object Identifiers

An object in an ODBMS is uniquely identified by an object idiet (OID). This OID is used as the
“key” when retrieving the object from disk. OIDs can paysicalor logical. If physical OIDs are
used, the disk blocks where an object resides is given dirbgtthe OID. If logical OIDs are used,

it is necessary to use an OIDX index (OIDX) to map from a lob@H to a physical location. Most
of the early ODBMSs and storage managers used physical Gd€amuke of its performance benefits,
and many of the commercial ODBMSs still do. However, usingsdal OIDs have major draw-
backs: relocation and migration of objects are more diffjowrhich in turn makes schema changes
and reclustering more difficult. In a system that manages\dich is expected to be stored for a long
time (which is the case for most databases!), with possitéeging applications and access patterns,
logical OIDs should be used to avoid performance degraaldditer.

3.1.1 Physical OID

The OID is usually organized as a data structure, designbdlmpthe ODBMS achieve good perfor-
mance. For example, consider the 64-bit OID used by the @igg¢DB (illustrated in Figure 3.1):

1. Alogical (federated) database can be composed of sgMeysical databases, and the first field
in the OID identifies the physical database. A physical degalis mapped to a file on a server,
so this field identifies the server and file where the objedioises.

2. A physical database is composed of a number of contaifiérs.container field identifies the
actual container.

3. The page field identifies the page where the object is stored

4. The slot field identifies the slot of an object on a page.

www.manaraa.com

18 CHAPTER 3. DESIGN ISSUES

Database Containet | Page | Slot
16 bits 16 bits | 16 bits | 16 bits

Figure 3.1: OID in Objectivity/DB [167].

An OID organized as a data structure like the one describedeabelps in providing efficient access
to objects, but at the same time it also imposes a strict bmihe number of databases and containers
in the system. Althougl’ objects can be created during the lifetime of a database @lnsize

of 4 bits is used, the number is much smaller in practice. In realdvapplications, it is impossible
to exploit all these fields, and it is obvious that carefuligiess needed to avoid problems with the
maximum numbers of containers in the system. At the same firieealso possible to get problems
because of the limited number of objects that is possibladiesn one container. These problems
can be eliminated by increasing the OID size, but that resltioe storage efficiency.

3.1.2 Logical OID

Logical OIDs are more flexible. Objects can be relocated, iantheory, it should be possible to
exploit the whole range of possible OIDs, given a certain GH2. However, in practice, the structure
of logical OIDs is often similar to physical OIDs, for exareghe OID structure used in Versant [46].
If such a structure was not used, OIDs from the same colleetnal from the same database would be
distributed over the range of allocated OIDs, making the XOU2ry unclustered.

The number of OIDs can be very large, and if logical OIDs aredus fast and efficient index
structure is necessary. The OIDX is typically realized asshtfile or as a tree structure [62]. Most
common is the use of B-trees, but other specialized strestoave been proposed: One example is the
hcC-tree[193], another example direct mapping62], where OIDs contain the physical address of
the mapping information, and the mapping information istkeja structure organized as an extensible
array.

3.1.3 Combination of Physical and Logical OID

To improve performance, it is possible to use a combinatigohgsical and logical OIDs, as is done
in Shore [136]. In Shore, physical OIDs are used at the storagnager level. However, thé@alue
Added Serverwhich is the interface to the users/application prograras, support logical OIDs by
maintaining an OIDX.

3.2 Object Storage Structure

The way an object is stored, determines the update and qusty.dn general, we have two primary
strategies:

e Direct storage model.

e Decomposed storage models.

10One bit is for internal use, so that only 15 bits are used ferdtntainer number.
2Note that authors of the papers discussing these modelsptdalwiays use a terminology consistent with previous
definitions.

www.manaraa.com

3.3. OBJECT CLUSTERING 19

3.2.1 Direct Storage Model

In the direct storage model, there is no fragmentation oflgaad. The object, with all its attributes,
will be stored as one contiguous sequence of bytes, sinailret in-memory version of an object in
most programming languages. Large objects can also belsisra contiguous sequence of bytes, but
they are normally implemented with some access method toowvepaccess efficiency.

3.2.2 Decomposed Storage Models

In the decomposed storage models [50], complex objects ezentbosed so that each tuple in a
database file (set of pages), only contains one of the atsbuogether with a surrogate (OID in
the case of an ODBMS). In one particular model, the binaryas® model, attributes are stored as
(A D, val ue) tuples. Providing that the tuples from objects in a certailiection are clustered
together, this keeps the number of disk-reads to a minimuhis i§ very beneficial in applications
where set queries are frequent, but if the objects are useabplycation programs in a persistent
programming language, the objects have to be reconstrietfmte delivery. To reconstruct a set of
objects, join operations are needed. Several studies learedone to study these tradeoffs [11, 205].

3.3 Object Clustering

In general, an object page contains more than one objectp@itiermance of an ODBMS depends
heavily on the number of object pages it has to read and wirite@rder to keep this number as low
as possible, we try to store objects that are expected todessed together, on the same page. This
process is calledbject clusteringand is done by using one or more of the following strategies:

e Clustering hints.
e Cluster trees.

e Dynamic clustering.

In most systems, objects that have been made persistentibgradustering strategy remain where
they are, even if the clustering policy changes (modificatibthe cluster tree in the case of a cluster
trees strategy, or changing access pattern in the case afrdgrclustering).

3.3.1 Clustering Hints

When using clustering hints, thegplication programmeihas to specify an existing object which
the new created object should be stored close to (if pogsifilee performance of this approach is
heavily dependent of an application programmer’s pregidiof future access patterns, and is likely
to break down in more complex multiuser systems. Systemsenthes strategy is supported, includes
ObjectStore, Objectivity and £

3.3.2 Cluster Trees

Cluster trees is a more general approach to obtain goodecingt In this case, thdatabase ad-
ministrator specifies rules for object clustering. Typical exampleslo$tering strategies are to store
together objects and related subobjects that are expextesl dccessed together later, and members
of a set that are later going to be accessed in scan operalibissstrategy is supported by, Q165].

www.manaraa.com

20 CHAPTER 3. DESIGN ISSUES

@ @ Client

Client Server g Server
— N
& ‘Cr \
(@) Single (b) Multiple server/multiple (c) Multiple server/multiple client
server/multiple client. (peer-to-peer).

client.

Figure 3.2: Client/server architectures.

3.3.3 Dynamic Clustering

If dynamic clustering is supported, tf@DBMStakes all responsibility for the clustering, and uses
sampling of previous access patterns to decide where te #terobjects. Algorithms and strategies
for dynamic clustering strategies include the Cactis aflgors [59] and stochastic clustering [207].
A combination of cluster tree and dynamic clustering is gdsssible, as described by Benzaken et
al. [10]. We do not know of any commercial ODBMS that suppartiynamic clustering strategy.

The performance of some object clustering techniques,ndifierent workloads, have been stud-
ied by Tsangaris and Naughton [208]. Of those studied, sii@hclustering [207] had the best aver-
age performance.

3.3.4 Reclustering

Although not yet supported by any of the commercial systexdaptive on-line reclustering is possi-
ble. One approach is described by Mclver and King [139], &edcbst of monitoring and reorgani-
zation has been studied by Gerlhof et al. [73].

3.4 Client/Server Architectures

The architecture of an ODBMS is usually a client/serverastri A client requests data, performs
some operations on the data, and sends updated data baelstntkr. The exact division of the work
between a client and its server, for example which of themdsxing data, varies between systems.

Several client/server architectures are possible. Figugdlustrates the most typical client/server
architectures, with processes drawn as circles, compuotgsas squares, and communication chan-
nels illustrated with arrows:

e Figure 3.2a is &ingle server/multiple clierdarchitecture. This is the traditional and least com-
plex architecture, supported by most systems. The cliemtsran on the same node as the
server if desired.

www.manaraa.com

3.5. METHOD EXECUTION 21

e Figure 3.2b is anultiple client/multiple servearchitecture. The client itself has the responsibil-
ity of connecting to the servers containing the data, anddaoage distributed commit (2-phase
commit). This architecture is also supported by most consiaksystems. A client can also in
this case run on the same node as one of the servers or as lhés.c

e Figure 3.2c is another variant ofmultiple client/multiple servearchitecture, similar to the
architecture of Shore ODBMS as presented in B9 this case, a client connects ¢mly
one server, running on the same node. The server has the rebpioynsf fetching remote
objects/pages. A possible variant of this option, is cBemsiding on other nodes than the
servers they are connected to. The main point is that onetdidy connects toneserver, and
this server communicates with the other servers as needbdlaif of the client.

3.5 Method Execution

The client and the server are in general different processasally executing on different nodes.
When an object method is to be executed, this can be done bittikeclient, by theserver or by a
separate process on behalf of the clientthe server node:

1. Client node/client process: The method executes in thetd address space.
2. Server node/client process: A process is executing oalbehthe client on the server node.

3. Server node/server process. The method executes inrfe’'s@ddress space.

The problem with the first approach, is that all data have tedyg from the server to the client,
something that easily makes the network a bottleneck. Thether approaches are (partial) solutions
to this problem, but at the same time they create some neweonsb which we will discuss in the
following sections. Not all executed methods need to bewgrecin the same way. In systems that
support more than one of the options above, it is possibldvémse one of the options, as a way of
tuning the performance.

3.5.1 Client Node/Client Process

Executing methods at the client, on the client node, is thetirmmmon in ODBMSs, and is supported
by all commercial systems [8].

In applications where good page clustering has been achiewel with only moderate data vol-
umes, this approach works well. However, in the case of gaarivolving filtering operations (for
example attribute selection), this approach wastes viduadtwork bandwidth. If filtering could be
done on the server, less of the data actually has to be treedpo

3.5.2 Server Node/Client Process

It is possible to run the whole client at the server node, hist¢an make the server node overloaded,
and we do not benefit from the processing power of the cliedendo solve this problem, and still
avoid the drawback of the client node/client process, ibssible to execute some of the methods (or
some of the query) on the server node (but note that they riseparate processes, i.e., not in the
same address space as the server process itself). Thisaappssupported by ITASCA [8, 97].

3This architecture was to our knowledge never implementeghiore.

www.manaraa.com

22 CHAPTER 3. DESIGN ISSUES

If the client and the server run on the same node, we have npbiens on how to do interprocess
communication. We can use message passing, as is done nalgeigat/server communication. One
step further, is to make the server buffer itself availabléhe client. In this casall clients access the
same bufferand the design of such a buffer has to be done very carefully:

e If using a shared read/write buffer, clients as well as theesedtself can write to the buffer.
A shared buffer eliminates the need for a separate clierfebufA shared read/write buffer
gives good performance, and locking can be done efficieldlyijt gives integrity and security
problems. A method can damage contents in the buffer in the oafailure, and there is no
check of access permissions. We consider this approachutnerable without a safe interface
language.

e If using a read-only buffer, clients can read from the byffart not write. The clients need
separate buffers for modified objects/pages, or alteraligtisend modified objects/pages back
to the server immediately (which usually will prove to beffieent). From a performance point
of view, a read-only buffer will in many cases be sufficierecause many of the typical heavy
queries are read-only queries. Security is still a problaithough encryption of shared memory
is possible. However, the cost of encryption would probdigyunacceptable. Integrity can also
be a problem if a client read data that is being updated byhanatient without adhering to the
locking protocol.

3.5.3 Server Node/Server Process

If the server knows the contents and structure of the obgtoted on the pages, it is possible to execute
methods inside the server process. Systems that supp®@ghroach include ITASCA, MATISSE,
POET, Objectivity, and Versant [8].

Methods written in C and C++, which are popular programmamguages for ODBMS applica-
tions, can literally do whatever they want, causing datagrity problems as well as damaging the
server process itself. This means that special care hag#ikée if general methods should be allowed
to be executed by the server process. Several solutionsstpritblem exist:

1. Use a type-safe language as data manipulation langualgis. miakes it easier to guarantee
that the methods executed in the language can not modifilggad data in the DBMS. This
approach has been used by Liskov et al. in Thor [128, 129, M0iants of this approach is to
use safe “data access languages”. language

2. Software-based fault isolation. In this approach, caudata are loaded into their own fault
domain, a logically separate portion of the server addresses and the object code of the
method to be executed is modified to prevent it from writingurnping to an address outside
its fault domain [211].

3. Interpreting the code. As Java has gained popularitydpiion has become more commercially
popular. Most commercial ODBMSs already support a Javaitgndut in most cases, client
methods are still only executed by the client. Interpretimg code is also done in Jasmine [95],
where a reduced functionality C interpreter is used.

4MATISSE and Obijectivity only support SQL queries at the serwhile Versant can only execute registered events
(change notifications/triggers).

www.manaraa.com

3.6. DATA GRANULARITY 23

4. Trusted methods. In an ODBMS, user supplied methods cdedlared as trusted by the data-
base administrator. They can then be executed in the ser@eédress space, while untrusted
methods are still executed in a separate address spaceiaftvaf this approach is the possi-
bility of user written “subservers” compiled into the DBMEhis is similar to thé/alue Added
Serverconcept in Shore [39], andataBlades/Cartridgesn commercial ORDBMSs.

In the case of applications based on C and C++ language bisdihe trusted method approach
and the software-based fault isolation are the the onlystgablternatives. However, the increasing
popularity of Java makes C/C++ less popular as ODBMS apgpitdanguages, and it is likely that
the type-safe language alternative (using Java) will bertbst popular in the future.

3.6 Data Granularity

The issue of data granularity arises in several contextsB&Ss. From an application program
or query language point of view, data is usually accessetbjatbgranularity. However, at the data
storage level, most ODBMSs handle data at page granularitizh means that fixed size pages are
read from and written to data volumes. We will now study theadganularity issues in ODBMSSs, in
three different contexts:

e Client-server data transfer.
e Buffer management.

e Concurrency control.

An issue not discussed here,dage size The aspects of page size have been mostly ignored
in ODBMS related research publications. Obviously, page san affect performance, and among
commercial ODBMSS, we see that the page sizes differ. Fanple Objectivity can use different
page sizes, up to 64 KB, while Versant has a fixed page size KB16

3.6.1 Data Transfer Granularity

Most ODBMSs are variants of data shipping object or pagessenObject servers have objects as the
unit of transfer between the server and client, while pageesss have pages as the unit of transfer.
The advantages of an object server are:

o If the objects on the object pages are not well clustereghpsing the whole page is a waste of
communication bandwidth.

e Understanding the concept of an object makes it possiblé&server to apply methods on the
object. This is very important in order to be able to do filbgrioperations in object-relational
queries.

¢ Fine-grained (object level) concurrency control is easiyrtplement.

The advantages of a page server are:

SParts of this summary are based on the descriptions by De\tt in [54].

www.manaraa.com

24 CHAPTER 3. DESIGN ISSUES

¢ If objects on the object pages are well clustered, shipgiegithole page can save many object
requests and communication overhead for each object. $tdkso an issue even in the case
where the client runs on the same node as the server. If ridogiemly one object at a time,
two process context shifts are needed for each requestedt@bgtween client and server pro-
cesses). This is obviously a too much, even on a relativelyniade this would limit the number
of object requests per second to a number in the order of 50000

e Fixed size pages are easier to manage than variable sizggtgad space allocation for pages
is easy on disk as well as in main memory.

Most commercial ODBMSs are page based. One exception isMenmshich is an object server, but
with some features to avoid the performance problems el&tesingle object accesses as described
above:

1. Get closureto retrieve references to all possible objects that carelvegated to, starting from
a group of objects.

2. Group read to retrieve a specified group of objects, for example basethe result from aet
closureoperation.

The page server architecture has, since the study of peafurenof alternative architectures by DeWitt
et.al. [54], been considered as superior to object servdmwvever, that study was done under the
assumption that each access to an object not resident itiehe ache needed one remote procedure
call, although it is noted that it would be possible for thevee to simulate a clustering mechanism
by figuring out what related objects might be needed. Theysalgb appears to be misinterpreted (on
purpose?) by many of the commercial companies. The papamnslusion is actually that there is no
clear winner in this study. An even more important factmtconsidered in the paper, is that different
applications often have different access patterns to ttabdae. This means that it can be impossible
to get a good clustering. Recent evaluations of real worfdlieations, for example by Hohenstein et
al. [88], support the view that object servers in many caséperform as well as, and in many cases
much better than, a page server. This is also verified by Kezhpé [105]. One drawback of page
servers that should be taken more seriously is the securdyirdgegrity risks of clients operating on
pages.

In our opinion, the most important argument in favor of thgeabserver architecture is the possi-
bility to do some of the work at the server side. This is esgdcimportant for complex set operations,
where filtering operations can significantly reduce the amb@d data transfer. This has been a ne-
glected issue in ODBMS, but we expect set operations to ngivore attention in the future. This
issue is also discussed in more detail in Appendix A.

3.6.2 Buffer Granularity

In the previous section we discussed the data shipping lgndiyu A related issue is the buffer gran-
ularity. We have the following alternatives:

e Page buffer.
e Object buffer.

e Dual buffer.

www.manaraa.com

3.7. BUFFER MANAGEMENT 25

Note that buffering at the server and the clients may be leghdifferently. For example, the server
can use a page buffer, while the clients use object buffersweder, if data transfer granularity is
pages, it does not make sense to have an object buffer atrtlez sile.

It is also important to note that multiple copies of data nhiggside in different client caches.
Replica management is necessary to ensure cache congistiarmhe consistency is usually achieved
by using pessimistic locking-based cache consistencypots [40].

Page Buffer

Most ODBMSs use a page buffer. If objects on object pages alieclustered, a page buffer makes
good use of the buffer memory. Fixed size pages are also easpnage. Space allocation is easy,
and we have no memory fragmentation problem.

Object Buffer

With an object buffer, objects are stored as independemictdbjn main memory, and not in the pages.
This approach is beneficial if objects on the object pagesatrevell clustered. In that case, storing
the whole page in main memory is a waste of space, because abguts in memory are not really
needed there. The result will be a lower buffer hit rate thecassary when accessing objects. Another
advantage is that it is possible to store objects larger tim@page as one contiguous object, which is
beneficial if server side execution of methods is possible.

Disadvantages of using an object buffer is that the per dlojeerhead in an object buffer can be
quite high, and we must expect some degree of memory fragiiemtas well. Updates are also more
complicated if we employ in-place updates. In that case wehdirty object is to be written back to
disk, it is necessary to first do an installation read of thgepahere the object should be stored.

Dual Buffer

A third alternative is a combination of page and object lngffeln this case, we try to keep well
clustered pages in a page buffer, and objects from lessechtsipages in an object buffer. This
approach is used in several commercial systems, includisgd, Ontos and Versant [52].

A thorough study of client side dual buffering by Kemper armsEmann [108] showed that dual
buffering can give a substantially higher buffer performoanhan a page buffer. However, the use of
a dual buffer introduces several new options that makesigumore complicated, for example when
to copy an object from the page buffer to the object buffed amen to copy a dirty object in the
object buffer back to its home page. This makes it less clearwell dual buffering would perform
in systems with complex workloads. Also, the study showetldnal buffering was mainly beneficial
with read queries, with update queries the gain was lessgative.

3.6.3 Concurrency Control Granularity

Concurrency control can also be done at different grartigari This is usually adaptive, and can be
fine grained, e.g., object, or coarse grained, e.g., pagéeagranularity.

3.7 Buffer Management

Keeping the most frequently used data in main-memory bafieduces the number of disk accesses.
Efficient buffer management is crucial to achieve good parénce, and in this section we will discuss

www.manaraa.com

26 CHAPTER 3. DESIGN ISSUES

buffer allocation and replacement.

3.7.1 Buffer Allocation Algorithms

With fixed size granules, for example pages, buffer all@catind deallocation is straightforward, and
we have no memory fragmentation.

With variable sized granules, we will in practice have somgrde of memory fragmentation.
The amount of fragmentation is dependent of the amount of @Bldre willing to use to reduce the
fragmentation. Using buddy allocation, which has a low CRidtcgives a memory utilization of
approximately 80%. However, it has been shown that it is éaggt a memory utilization above 90%
by only a marginal increase in the CPU cost [70, 104].

3.7.2 Buffer Replacement Algorithms

The main-memory buffers can usually only keep a selectededudf the contents that are stored on
secondary and tertiary storage. When an item is broughtnrdgim memory, another item has to be
removed from the buffer to make space for the new item.

Buffer replacement is often LRU based. In the case of a pafferbthe pages are usually linked
in an LRU chain. The overhead of an LRU chain is acceptablenvthe size of the pages is much
larger than the extra data structures needed for the LRUNCl¥ith a finer granularity, there is a larger
number of granules, and a higher number of accesses to ettldnaf In this case, the traditional LRU
chain can be a bottleneck:

e The memory overhead may be too high. For the LRU chain, twotpms are needed for each
item.

e The CPU overhead can be too high, because we have to updatesineon every access.

e When the buffer is shared between several threads or pesabe pointers need to be protected
by semaphores, and the head of the chain will often becommag®re bottleneck.

Good approximation to LRU, useful for finer granules, aredloekandenhanced clocklgorithms [61],
also called second-chance algorithms. With the clock @lgor only one overhead bit is needed for
each granule, aaccess bitFor the enhanced clock algorithm, two bits are usedcessand adirty
bit.

When using the clock algorithm, the access bit is set eadh @imitem is accessed. The buffer is
treated like a circular queue. We havelack arm(a pointer) that points to an item. When we need
a candidate to discard during replacement, we move the @ookclockwise until we find an entry
where the access bit is not set. When we move the clock armiteves with the access bit set, we
reset the access bits while we move the arm. In this way, amvtél be discarded the next time the
clock arm points at it, if it has not been accessed in the nmaant

With the enhanced clock algorithm, we also consider they ditt when deciding which item to
discard. In general, it is cheaper to discard an item thabik blean and has not been accessed for a
while, because it does not have to be written back before@nmsoved.

The advantages of using a clock algorithm are:

1. Lower cost when accessing an item, only the access bibHaes ipdated.

www.manaraa.com

3.8. INDEXING 27

2. Less synchronization overhead is necessary. For examplecks need to be acquired when
an entry is accessed. That would be necessary when movingseaftter an access in an LRU
list.

3. If the access bits for the entries are stored in a packeddtri.e., access bits for several entries
are stored in one machine word, the space overhead is redureiderably. In this case,
locking the word where an actual access bit resides, is sBane$o get a serialized behavfor,
in order to avoid loosing aet bitoperation if two threads try to update different bits in a dor
by doing aread word, set bit, write wordequence. However, loosing an occasional access
bit update should not seriously affect the buffer hit perfance, so in practice, locking is not
necessary!

3.8 Indexing

Indexing is a well-known technique used to reduce the quesgscin DBMSs. In RDBMSs, only
primitive attributes are indexed, but the increased exgivesess of the ODBMS data model makes
new indexing techniques possible as well. There are als@ sspects that is different in RDBMS
and ODBMS indexing, and should be kept in mind:

e In RDBMSs indexing is not an integral feature, although vegguently employed. In an
ODBMS, on the other hand, indexing is always employed. Asudised in Section 3.1, every
object has an unique OID which can be used as a handle toseethie object.

¢ In RDBMSs the relation as an extent, i.e., all members of ¢tegtion, is always maintained. In
the case of object classes in ODBMSs, this is optional. Ineseystems, the extent is always
implicitly maintained, while in other systems, this has éodwne explicitly, with additional cost
as a result.

e Although indexing primitive attributes in ODBMSs can be #anto indexing attributes in
RDBMSs, the indexing is more complex due to existence ofdigesrarchies [112].

In the rest of this section we give a brief overview of pathexitig and function materialization,
which are not issues in RDBMSs, but can be important in orderchieve good query performance
in ODBMSs.

3.8.1 Path Indexes

Most ODBMS query languages allow queries on path expresgisually expressed by tlget nota-
tion). Several techniques for indexes supporting pathesgions have been proposed. These include
different path indexe$13, 14] as well amccess support relatiorj&09].
Path expressions is actually a kind of implicit join. If nalpéndex exists, it can be cheaper to use
explicit join techniques (pointer-based joins) in set gegrinstead of doing pointer traversals [188].
Related to path indexing, feld replication[187], where the field (attribute) at the end of a path
expression is replicated, and stored inside the first olijettte path.

®If a set bitoperation exists, this is not necessary. However, sindlef#rations is not always available, usually they
are provided only by CISC processors, for example the Ir@élfamily.
"In the case of physical OIDs, the indexing is implicit.

www.manaraa.com

28 CHAPTER 3. DESIGN ISSUES

3.8.2 Function Materialization

Predicates in ODBMS queries can involve methods as welltaluges. It is possible to use precom-
puted values for methods to increase query performances t€bhnique is calleflinction material-
ization[106].

3.9 Swizzling

Pointer swizzling is the process of converting pointers nnadject from disk format (physical or
logical OIDs), to memory addresses, so that subsequenttaig@igation operations do not have to
go through an index or “resident object table” in order to fihd actual object. Although swizzling
has not previously been considered as a server issue kelg that it can increase the performance if
methods can be executed by the server.

The possible gain from swizzling does not come for free. Ifadject has been modified, all
swizzled pointers to this object have to be changed backstofdrmat before the object is removed
from the buffer. Thus, swizzling is only beneficial if the g&fied object is referenced several times,
and the update rate is sufficiently low. Several swizzlingtsgies exists [141, 213]. Which strategy
to use, and whether to swizzle at all, depends heavily ondbess pattern, and adaptable swizzling
strategies might be a good alternative [107].

3.10 Query Processing

Query processing in an ODBMS can be done in much the same wajsakne in a RDBMS [110,
219]. The uséY submits a query to the system, usually in some declarativguiage. This query
is optimized, normalized, and transformed to some objegtlab expression. After type checking,
algebra optimization is performed, and an execution plamfthis optimized algebra expression is
generated and executed. Similar to a RDBMS, the differemexécution time between a query with
good optimization and a query with bad optimization, candeegal orders of magnitude.

Even though the basic techniques are the same as in RDBMSBMSDyuery processing has
many aspects which makes it more complex than query pragessRDBMSs. The most important
differences are [111, 219]:

e ODBMSs have a much richer type system than RDBMSs, which o the single aggregate
typerelation. In ODBMSs, queries can be performed on various kinds okctthns, where
members can be of different types.

e Encapsulation and methods: how much should the system kbout ¢he implementation of a
method, and should it be able to break encapsulation?

e An object may reference other objects, and accessing thgset® involves path expressions/implicit
joins.

e In ODBMSs, indexing can also be done on access paths, nobargyimitive attributes, as in
RDBMSs. Class hierarchies also complicate the use of indexi

8User in this context can be either a person giving a commatitetBBMS, or an application program sending a request
to the DBMS.

www.manaraa.com

3.11. PARALLEL ODBMSS 29

¢ Inheritance can make it difficult to determine the accespasad a query. This makes efficient
object access more complicated.

e Cyclic queries need special attention.

These differences, the availability of different kind oflexes, and the choice between forward and
reverse traversal (whether to start on the target clagsésbquery graph, or at any intermediary)
increase the number of possible query plans. This makesrtieess of evaluating query plans more
costly and difficult in an ODBMS compared to a RDBMS.

3.11 Parallel ODBMSs

The performance of a DBMS can be increased by increasingwiitable hardware resources. This
means more powerful hardware, or duplication of resour&maploying more powerful hardware is
one solution that has been considered “easy”, as it has neeqaences for the implementation of
the ODBMS itself. However, this strategy is only cost effeetup to a certain point. After that,
duplication of resources, i.e., a larger number of CPUs askkdis needed. It should also be noted
that this strategy is more difficult than it looks, because@U speed, memory- and disk bandwidth
have to be kept in balance.

If using more than one CPU and more than one disk, work has disbr#buted over the CPUs and
the disks in a way that make all of them busy most of the timd,aaoids any single bottleneck. Even
though parallelization of “simple” set queries are well argtood from the work on parallel query
processing in RDBMSs, parallel query processing in ODBMSks$s mature. There are several
reasons for this, but the most important is that ODBMS queocgssing can be very complex in
itself. The fact that the architectures of most systems ased on data shipping, makes filtering on
the servers difficult, and it is difficult to keep the data sfam volume at a moderate level.

In this section, we discuss parallelization in ODBMSs. Watswith a presentation of alternative
parallel architectures, and then give an overview overeissn parallel query processing. To set the
work presented later in this thesis in context, we also sunm@aork on previous parallel ODBMSs.

3.11.1 Alternative Parallel Architectures

Even on single processor computers, as illustrated in Ei§u8a, multiple disks are common, and
if used to host a DBMS, are necessary in order to provide r@aloey in the case of media failure.
A larger number of disks can also be used to improve the datesfier bandwidth and transaction
throughput, for example by using RAID technology. The adaga of this approach, is that it is
relatively easy to utilize the disks.

Current servers are often symmetric multiprocessors (SMR) a number of disks attached. In
an SMP, all processors have equal access to memory and dikksis called ashared everything
configuration (see Figure 3.3b). The limiting resource inSMP node is the bus, which soon gets
saturated as more processors are added. The advantaghiwiipproach, is that it is relatively easy
to utilize the CPUs if the DBMS is implemented as a multitioiesdhor multiprocess server.

A further improvement ishared diskwhere processors have equal access to the disk system, but
not on the same bus (see Figure 3.3c). In a shared disk caatigurissues such as fragmentation
and clustering are easier than for a shared nothing appr&@ared disk is the traditional mainframe
approach, and has not been very common in the case of systadesfrom off-the-shelf hardware.

www.manaraa.com

30

CHAPTER 3. DESIGN ISSUES

Processor | | Memory

Bus
C Yy D

(a) Single processor computer.

Processor [@ ¢ @

i

Processor Memory

Bus

>

(b) Shared everything configuration.

Processor | | Memory

Bus

-Processor -Memory

Bus

| Network

Network

Processor | | Memory

Bus

Processor | | Memory

Bus

(c) Shared disk configuration.

(d) Shared nothing configuration.

Figure 3.3: Alternative parallel architectures.

www.manaraa.com

3.11. PARALLEL ODBMSS 31

However, with the increasing popularity of storage areavoeks, using Fibre Channel, we expect it
to be more common in future systems.

The most scalable approachsisared nothingsee Figure 3.3d). In this case, we have a number
of nodes which each has local memory and a number of disksndties communicate through some
kind of interconnection network, using message passinghakezl nothing computer is also com-
monly called amulticomputer but nowadays, a cluster of workstations connected to hagtulwidth
network is also suitable as a platform for a parallel datalszsver.

3.11.2 Parallel Query Processing

We will in this section concentrate on issues related toeshaothing servers. However, it should
be noted that some of the work done in the context of multissors is also relevant, including the
research on parallel query evaluation done by Harder ¢9@J, and on optimizing and parallelizing
ODBMS programming languages by Lieuwen et al. [127].

Data Distribution

Optimal allocation and fragmentation is very important, tmmplex objects, object classes and inher-
itance increase the size of the solution space for the dstitdition problem. These issues have been
studied by a number of researchers, including Gruber anduaz [82], Karlapalem et al. [103],
and Ghandeharizadeh et al. [76]. Ghandeharizadeh etalslaésv how replication can be efficiently
employed to increase performance. It has also been showimthaarallel system where it is possible
to store most of the working set in main memory, utilizing dggregate memory of all the nodes can
significantly improve the performance [209, 210]. A moreailed discussion if the data distribution
problem is given in Chapter 11.

Query Processing

Optimal data distribution is in general heavily linked tcegies on the data. This has been studied in
detail by Kim [111] and Chen and Su [48]. In many cases, redigton of data can be efficient [121].
Parallel join algorithms for set-valued attributes is ddsed by Lieuwen et al. [126].

3.11.3 A Brief Overview of Parallel ODBMSs

We will now give a short description of previous parallel OMBs. With one exception (Objectivity),
all the described systems are research prototypes. Sefdta prototypes (ADAMS, AGNA, and
PPOST) are systems built as a part of a PhD work, and seemsddkan abandoned after the PhD
work was finished. One of the systems, Shore, has never bg#enmanted as intended (multi-server
version), while the work on Multicomputer Texas seems tehHasen restricted to the cited paper only.
All'in all, these systems illustrate well how immature theanof parallel ODBMSs is. Although the
complexity of the area is one reason why so little researchble®n done, it is likely that the advent
of ORDBMSs, which had a negative impact on the amount of ODB&®arch in general, also has
been important. However, the results from some of theseegi®jhave been convincing enough to
make us believe that this is an area that deserves more aesigarch.

In addition to the systems described here, some of the coomheystems also provide some
support for multiple servers. However, the applicationgsamnmer has the responsibility for the dis-
tribution of data, and the support for distribution mostlgans “the system supports 2-phase commit”.

www.manaraa.com

32 CHAPTER 3. DESIGN ISSUES

ADAMS

ADAMS is a parallel “data management system”, running ontaaek of workstations [86, 174]. It
has many ODBMS features, but lacks concurrency control aoovery, which are important features
of a database system. Its main application area is SSDBsgeanndnere these features often are of
minor importance.

ADAMS employs the decomposed storage model for object g&rand declusters objects by the
OID. The system processes set operations by streaming afidatmost parallel RDBMSs, and has
shown good performance and scalability.

AGNA

AGNA [145], a persistent programming system, is based onSPLlIke environment. The system is
designed to run on a shared nothing multicomputer. Objeetssferenced by their heap address. The
heap is global, and distributed over the nodes in the system.

Bubba

Bubba is a highly parallel DBMS [28]. Its application areadsa-intensive applications. Data is

horizontally partitioned (which favors objects with fewfeeences to other objects), and performance
depends on executing operations at the node where the oégdes. This is supported by the use of
automatic parallelization by the Bubba compiler and anyditall model for data placement.

Eos

Eos, which is short foEnvironment for building Object-based Systeissa distributed single-level
store [81]. Distribution of data over the nodes is suppoltgdhcilities in the Mach operating system.
Eos is supposed to be scalable, but there are no data onrparfoe that can support this claim.

Multicomputer Texas

The Multicomputer Texas [18] is a parallel object store llage the Texas object store [189]. Multi-
computer Texas has been implemented on a Fujitsu AP100@comaputer and a network of worksta-
tions. A modified Texas object store is run on each node, giogia global persistent address space.
In this way, we can see it as a distributed shared memory mgeation. No support for parallel
query processing or efficient declustering of data is predijcand performance is highly dependent of
the locality of data to be accessed at the nodes. In thiscespe feel that the practical value of the
implementation is limited.

Objectivity

Objectivity [167] is the only commercial ODBMSs that is altite use parallelism to significantly
increase performance. Objectivity is a page server ODBM#$pleying NFS (Network File System).
The servers run on ordinary network connected workstatiand the distribution of data can be used
to increase performance as well as availability (by refilicg. Objectivity has been chosen as the
ODBMS to be used in the CERN RD45 project, where experimeiltganerate an amount of 1 PB
of data a year, and up to 1.6 GB/second data rate [44, 45, 46, 47

www.manaraa.com

3.12. SUMMARY 33

OSAM* KBMS/P

OSAM*.KBMS/P is a parallel, active, object-oriented kneaie base server [201]. The server runs
on a shared nothing computer (nCUBEZ2), and the clients okstations connected to the nCUBE

via Ethernet. The knowledge base is partitioned class;wisg all members of a class is stored on
the same node. A global transaction server is used to siggeexiecutions.

PPOST

PPOST [21, 22, 23] is a parallel, main-memory object starglémented on a cluster of worksta-

tions. Because transactions are committed to disk se@lignthe architecture is only suitable for

application areas with a small number of concurrent trainsag, and where transactions are short in
time, but with high data bandwidth.

Shore

Shore [39], Scalable Heterogeneous Object REpositorypésistent object system with many novel
features. The most interesting in the context of this sacigthe introduction of a symmetric peer-to-
peer server architecture. All application programs in th&tem are connected tme serverrunning
on the same node. This server is the gateway to the DBMS. tlnfately, multi-server Shore has
never been implemented, although some research have beemdparallel set processing by the use
of ParSets [57], and global memory management [209, 210].

The storage manager of Shore has later been used in Parafljd9e7B], a parallel DBMS for GIS
applications. Paradise is described by the authors astagjetional, rather than object based (or
object-oriented).

3.12 Summary

The design of an ODBMS introduces new issues not found in RBBNMind we have in this chapter
discussed design issues in ODBMSs, with an emphasis orsiisaieare specific for ODBMSs. The
discussions in this chapter will be used as a backgrounchtodescription of Vagabond, as well as
establishing the terminology which will be used in the rdghds thesis.

www.manaraa.com

34 CHAPTER 3. DESIGN ISSUES

www.manharaa.com

Chapter 4

Temporal Database Systems

The rest of this thesis will concentrate on the design of gotmal ODBMS. It is therefore appropriate
to start with an introduction to temporal DBMS in generak terminology, and related work in the
area. This chapter is not intended as a complete study ororaingiatabases, its purpose is only to
give the reader the necessary background to comprehendshefithis thesis.

4.1 Whatis a Temporal DBMS?

A temporal DBMS is a DBMS that supports some aspect of timérmmally, this means that data
is associated with time, and that a tuple (temporal RDBMS)lject (temporal ODBMS) can exist
in several versions, each version being valid in a certaire tinterval. An example is the salary of a
person. Each time the salary is changed, a new version ofeis®p's salary tuple/object is created.
In a temporal DBMS, this versioning, related to time, is supgd and maintained by the system,
which also provides support for querying the data.

Even before people started to think about temporal DBMS aarea of its own, time has been
related to data in a database, for example by the use of @ougtticontaining a time value. Typical
examples are attributes such as “birth day” and “hiring daltéowever, there has not been support
for temporal aspects in the query languages, and queriemandgement have been done in various
ad-hoc ways. In our terminology, we call this uninterpretgtlibute domain of date and timeser-
defined time A temporal DBMS is now defined as a DBMS that supports somecagy time, not
counting user-defined timd traditional, non-temporal DBMS is called a snapshot base system.
Not all data stored in a temporal DBMS needs to be temporattadata that is not temporal is called
shapshot data

Even though temporal databases have a long history, it is\aly recently that research in this
area really has taken off, and more importantly, the inguisérs begun to signal interest in the work.
Two projects have in particular contributed to the curretgiest and results in the area: tensensus
glossary of temporal database concefi81], and theemporal structured query languag&@SQL?2)
specification [191]. The consensus glossary is recommehglea significant part of the temporal
database community, and the definitions and terminologkishahapter are based on that glossary.

4.2 Data Models

Many temporal data models have emerged during the years.egeptation of these is outside the
scope of this chapter, and we will only give a brief overvieiatlee most important aspects of these

www.manaraa.com

36 CHAPTER 4. TEMPORAL DATABASE SYSTEMS

models.

4.2.1 The Time Domain

Time models can be linear, branching, or cyclic. In a lin@aetmodel, time advances from the past
to the future in an ordered step by step fashion. In a bragdivime model, time can split into several

time lines, each representing possible event sequencea.cyclic time model, we can also have
recurrence. One example is a week, where each day recuss\wegek [218].

The time line itself can be either discrete or continuouslid€rete, each point in time has a single
successor, like natural numbers. If continuous, there argaps, similar to real numbers. In most
models, a discrete time line is used, where we have a nomtsxsable time interval of some fixed,
minimal duration of time called ahronon Important special types of chronons include valid-time,
transaction-time, and bitemporal chronons. A data modiltypically leave the particular chronon
duration unspecified, to be fixed later by the individual agions, within the restrictions posed by
the implementation of the data model.

4.2.2 Aspects of Time

The most common aspects of time in temporal DBMSs is traimsatime and valid time.

Transaction time: A database fact is stored in a database at some point in tndafter it is stored,

it is currentuntil logically deleted. The transaction time of a datab@ase is the time when the fact
is current in the database and may be retrieved. Transanti@s are consistent with the serialization
order of the transactions. Transaction-time values cahadater than the current transaction time.
Also, as it is impossible to change the past, transactiordioannot be changed. Transaction times
may be implemented using transaction commit times, andyaters-generated and -supplied. It is
important to note that each update of an object creates a meent version. We call the non-current
versionshistorical versions

Valid Time: The valid time of a fact is the time when the fact is true in thedeled reality. A fact
may have associated any number of instants and time insewih single instants and intervals being
important special cases. Valid times are usually suppliethé user.

Valid times can be open-ended intervals. One example of ithithe existence of a house. We
know when it was built, but now when it will be removed.

Bitemporal: Temporal DBMSs can also support a combination of these &spaitemporal data.
Bitemporal data have exactly one system supported valig imerval, and exactly one system-
supported transaction time.

A bitemporal interval is a region, with sides parallel to @izees in a two-space of valid time and
transaction time. When a bitemporal interval is associatede database with some fact, it identifies
when that fact was true in reality (during the specified vaeof valid time), and when it was logically
in the database (during the specified interval of transadiioe).

A good example to illustrate the use of transaction and vifiek, is a GIS database. In this
database, objects such as houses and roads are stored. Mblgiec is stored in the database, it is
timestamped with the transaction time. However, the tingeabtual object existed in the real world is

www.manaraa.com

4.3. TEMPORAL QUERIES AND QUERY LANGUAGES 37

in general different from the time it was entered into the D8NFor this purpose, it is also hecessary
to store the valid time of the objects in the database.

4.3 Temporal Queries and Query Languages

Several query models for temporal databases have beengapand others are likely to be proposed
in the future. In practice, most research on temporal daedés now based oRSQL2[191], an
extension of SQL-92. TSQL2 provides language construgtsdbema definition, schema evolution
and versioning, and querying and updating temporal relatid he goal of the language design was to
form a common core for future research, more than designiagguage for the commercial market,
but work is currently under way to incorporate TSQLZ2 into S3J1L90].

TSQLZ2 employs a simple data model, based on the relatiotahdadel. In the conceptual model,
the bitemporal conceptual data mogdéliples are timestamped with a bitemporal interval.

Queries are performed on a collection of tuples. In additthe traditional relational operators,
temporal operations are also needed. We will now presentnitbe&t important temporal operations,
with examples based on TSQL2 [191].

4.3.1 Temporal Selection

With temporal selection, it is possible to retrieve datddvat a certain timeyalid time selectionor
current at a certain timeransaction-time selectiorit is also possible to do a selection based on both
valid and transaction timdjitemporal selection

Several new operators are included in TSQL2 to be used inetmparal selection predicates,
including operators for comparison of timestamps:

e FIRST(event, event)
e element PRECEDES element

e period CONTAINS period

To illustrate temporal selection, consider an exampleyfrem an employee database that lists all
of the employees who worked during all of 1991

SELECT Name
FROM Employee
WHERE VALID(Employee) CONTAINS
PERIOD(DATE '01/01/1991’, DATE '12/31/1991")

4.3.2 Temporal Projection

In a query or update statement, temporal projection pagsctimputed facts with their associated
timestamps, usually derived from the associated timestamps of the lyidgrfacts. The generic
notion of temporal projection may be applied to various #petime dimensions. For example, valid-
time projection associates with derived facts the timestitithey are valid, usually based on the
valid times of the underlying facts.

!Note that a timestamp can also be an interval.

www.manaraa.com

38 CHAPTER 4. TEMPORAL DATABASE SYSTEMS

4.3.3 Temporal Join

A temporal natural join is a binary operator that generalitee snapshot natural join to incorporate
one or more time dimensions. Tuples in a temporal natural gse merged if their explicit join
attribute values match, and they are temporally coincidietibe given time dimensions. As in the
snapshot natural join, the relation schema resulting fromnaporal natural join is the union of the
explicit attribute values present in both operand schemlasg with one or more timestamps. The
value of a result timestamp is the temporal intersectiorhefinput timestamps, that is, the instants
contained in both.

4.3.4 Coalescing

Associated with each tuple in a temporal relation is a tiaragt, denoting some period of time. In
a temporal database, information is “uncoalesced” whetesupave identical attribute values and
their timestamps are either adjacent in time or share some ith common. Coalescing is similar
to duplicate elimination in conventional databases, aigopotentially more expensive [25]. Its
purpose is to effect a kind of normalization of a temporadtieh with respect to one or multiple time
dimensions. This is achieved by packing as many value-algit tuples as possible into a single
value-equivalent one.

Example: Given two tuples with the same non-temporal aitei and valid in the time intervals
[40, 50> and [45, 60>, respectively} The result of a coalescing these tuplesii® tuple, with the
same non-temporal attribute values as the two input tuples$the time interval [40, 69.

4.3.5 Temporal Aggregation and Grouping

The main difference between traditional value-based aggien and grouping, and temporal aggre-
gation and grouping, is the inclusion of time in the domaiagdregates, and the possibility to group
on time. For exampleMIN(VALID(R)) can be used to select the value of the oldest or earliest tuple
in a table. In addition to the traditional aggregate funadionew functions can be useful in temporal
databases. One example is RESING operator in TSQL2, which is defined to return the longest
period which a numeric value was monotonically rising.

Time can be used as basis for the partitioning in the groupargjof the aggregation. The time-
line can be divided into partitions, i.e., into time perio#®r example, to compute the average salary
for each 3 month period along with the start date of the petioel following query can be used:

SELECT AVG(Salary), BEGIN(VALID(E))
FROM Employee AS E
GROUP BY VALID(E) USING 3 MONTH

4.4 Programming Language Bindings

In non-temporal ODBMSs, ODMG’s OQL or similar query langeagan be used for ad-hoc queries.
Similar to the way OQL is a superset of the part of standard 8@t deals with databases queries, itis
possible to design a temporal OQL that is a superset of TSQb2.such approach has been described
by Fegaras and Elmasri [67]. However, one of the main adgastaf ODBMSs is the avoidance of

2[Ty, T»> is short for the time interval fror; to T, including T but notT (open-ended upper bound).

www.manaraa.com

4.4. PROGRAMMING LANGUAGE BINDINGS 39

the language mismatch by providing computationally coneptiata manipulation languages with no
mismatch between language and storage. In the ODMG standagliage bindings based on C++,
Java and Smalltalk are described. Such language bindiegaso needed for temporal ODBMSs. It
should also be noted that in order to use methods in quehiesgtissues have to be resolved.

A general purpose programming language is only designeduent data. Integrating support
for access of historical data into a programming languagieduces a lot of interesting but difficult
issues, including:

e Which object interface/signature to use when accessingtartdal object version. The schema
might have been changed since the historical version wagetteso that the current interface
to the class is different from the one previously used.

¢ Which method implementation to use when calling methodssitofical objects. One straight-
forward approach is to use the implementation that was ntiaethe same time as the actual
object version was current. However, this is not necegsaiilat we want, if the reason for a
new implementation of a method was a bug in the previousmerdihis problem can be solved
by providing the necessary information at schema change. tim

e How to integratdimeinto the syntax of the programming language.

In the rest of this section, we will discuss the integratidraccess to historical data into a general-
purpose programming language.

4.4.1 Temporal C++ Binding

In this section, we describe two approaches that extend #iel&@guage binding with support for
access to historical data in a transaction-time ODBMS. Tisé dipproach is based on the language
binding used in POST/C++ [202], while the second is to ounkiedge new. The concepts of these
approaches can also be employed for a Java language binding.

Explicit Object Version Access

The easiest way to integrate object version access intatigggmming language is to provide explicit
access to the versions. This is the way it is done in POST/Q62][Given an OID, the program
can be given a pointer to a historical version valid at a paldir time by calling a functiosnap-
shot (A D, ti me) . Itis also possible to create iterators that can be usedvigaia the versions of
an object in chronological sequence.

This approach should be easy to use and understand, butdfitdsbe possible to call a method in
a historical object version that accesses other objeadyigitiorical version must itself do the necessary
operations in order to retrieve the objects valid at the same as when the version was created.

The Explicit Snapshot Approach

A better and “cleaner” alternative than the one describerl/alis to use explicit snapshots. Before
calling a method in a historical version current at titree, we set the snapshot time with a call to the
functionset _snapshot (d_Ti nestanp ts). After theset snapshot () function has been
called, an access to a particular object will be to the objerdion current at times, even though the

www.manaraa.com

40 CHAPTER 4. TEMPORAL DATABASE SYSTEMS

reference is through d_Ref .3 A call to set _cur r ent () will set accesses back to normal, i.e., an
access to a particular object will be to the current objecsioa. Methods called in historical objects
should in general be immutable, i.e., read-only methods ddvantage of this approach is that all
object versions accessed will be object versions validessttme time.

All access, creation, modification and deletion of persistdjects must be done within a transac-
tion. In the ODMG C++ binding, transactions are implemerasdbjects of the class Tr ansact i on [43]:

cl ass d_Transaction{
public:
d_Transaction();
~d_Transaction();
voi d begin();
void conmit();
voi d abort();
voi d checkpoint();

private:

h

Theset snapshot (d_Ti mest anp ts) andset current () functions are performed in the
scope of a certain transaction, so it is reasonable to extendrdinary C++ transaction class with
these methods, for example with a derived class basatl bnansact i on, which includes these
functions as methods:

class d_TTransaction: public d_Transaction{
public:
voi d set _snapshot (d_Ti mestanp ts);
voi d set current();

private:
I3

Each temporal object can be viewed as a collection of objstions. A collection interface should
exist to make it possible to iterate through the object wmisiin a flexible way. This collection
interface is also used when assigning a valuedd#Ref variable (a reference to a particular version),
i.e., assigning an object version to ttheHRef .

4.4.2 To Bind or not to Bind?

We have now outlined how objects could be accessed throutindasd language binding. It should
be noted that the problems involved in this integration akso be an argumemigainstdoing this. It

is possible that only allowing access to historical versitimough a temporal query language is less
error prone and more efficient than providing access thramlexplicit language binding. A more
in-depth study of the language binding, and whether to hizaaill, is interesting further work.

3A d_Ref is areference to an object.

www.manaraa.com

4.5. VACUUMING 41

4.5 Vacuuming

When an object has been deleted in a snapshot databasendtdanaccessed later. Usually, the space
occupied by the object will be overwritten by new data aftdras been deleted. Temporal databases,
however, follow a non-deletion strategy, where logicallaeded data are kept in the database. Even
though storage cost is decreasing, storing an ever growdtgpbdse can still be too costly in many
application areas. A large database can also slow down dezlsyf the database system by increasing
the height of index trees (even though this can be avoideld mviilti-level indexes, at the cost of a
more complex system). As a consequence, it is desirable @bleeto physically delete data that
has been logically deleted, and delete non-current vessiblata that is not deleted. This is called
vacuuming Note that the termracuuminghas also been used for the migration of historical data from
secondary storage to cheaper tertiary storage. In thissthes will use the term fophysical deletion
only.

4.6 Implementation Issues

We will do a more detailed discussion of some implementassuoes in temporal DBMS later in this
thesis. In this section, we will restrict the discussion mooaerview of some of the most important
work in the area.

4.6.1 Partitioned Storage

Storage of data in a temporal DBMS is not very different fraorage of data in a traditional DBMS.
However, because current data tend to be more frequentissed than historical data, data is often
partitioned into aurrent storeand ahistory store The two stores can utilize different storage formats,
and even reside on different storage media [4]. In this wegguently accessed data is clustered
together, stored on fast storage media, while historicediwas can be stored on slower but cheaper
storage media. The total storage cost is reduced, similduetgoal of general storage hierarchies.

4.6.2 Timestamp Representation

Timestamps can be viewed from two levels: logical and plajdavel. The logical level is the user’s
view of the values, for example from a query language. At tdutdal level, the timestamp may look
like “Dec 4 22:14:44 1998". It can also look like “1998/12/04n a different format, at a lower
granularity. However, physically, the timestamp is uspadipresented differently. We have several
goals we want to achieve:

1. High precision. For many applications, precision dowwlay or hour is enough, while other
applications need finer granularity. This is especially ami@nt for transaction-time databases,
where we want objects from different transactions to havguetimestamps.

2. Large range. In the case of valid time, a timestamp shalddliy be capable of representing
all points in time, from the Big Bang to Armageddon. Howeweia transaction-time database,
we can accept a smaller range, from the day the system is $iest, @and to “some time in the
future”.

3. Low storage cost. To keep storage costs down, the numbmrte$ used to represent a time-
stamp should be as small as possible, given the other cimstra

www.manaraa.com

42 CHAPTER 4. TEMPORAL DATABASE SYSTEMS

4. Low processing cost, for example when creating timesgmpmparing timestamps (including
ordering of timestamps), and translating between diffecatendar representations.

As can be observed, high precision and large ranges confiibtlew storage cost. Given a certain
storage cost, high precision and large ranges are confligals. Low storage cost conflicts with low
processing cost, because efficient storage of a timestathpften imply transformation before and
after processing.

Alternative timestamp representations can be classified as

1. One-field alternative, often used in operating systems&lrlix, 32 bits are used to represent the
seconds since its origin. This format is very space efficiantl results in low processing cost.
However, the range, 136 years, is too small for a generalqzerpalid time temporal database.
Although the range is large enough for a transaction-timmeptaral database, one should keep
in mind that some of the data stored in temporal databasédbevilsed some time far in the
future, so that one should consider a larger range. In maplcagtions, the precision (seconds)
is too small as well. However, both precision and range cailyelbe increased by increasing
the number of bits in the timestamp.

2. Multi-field timestamps, as used to represent time in mamyroercial RDBMS. In this case,
there are separate fields in the timestamp for year, monthetta In each field, the actual
year/month/day can be stored by using packed decimals dng stpresentation.

In a study of this issue, Dyreson and Snodgrass [60, 191jhgsed a new timestamp format to solve
the problems above. In their timestamp format, specialesidesignate special times rew and
forever They also made the observation that users have a telegcapim of time, times close toow
should be represented with finer granularity than timesgrmin the past or in the future. They can be
represented with an extended range and coarser granul@hey proposed timestamp representation
can have different lengths: 32, 64, and 96 bits.

4.6.3 Indexing Temporal Databases

To support efficient retrieval of temporal data, indexingiésessary. Much research has been done in
this area, and a comprehensive survey of indexing timevewgldata has been done by Salzberg and
Tsotras [178]. This issue will be discussed in more detailapter 8.

4.6.4 Temporal Query Processing

Even though most other aspects of temporal databases nons deebe well explored areas, the
amount of publications on temporal query processing isrslifitively small. One of the reasons for
this, is that much of the other work (and implementations)ehased astratum approachin which

a layer converts temporal query language statements imeeotional statements executed by an
underlying DBMS [100]. Although this approach makes theaduction of temporal support into
existing DBMSs easier, we do not see it as a long-term solubecause temporal query processing
with this approach can be very costly.

Previous work on temporal query processing includes thé&wgrLeung and Muntz [122, 123],
which was a study of query execution on a data stream witlesupith increasing timestamps. That
work was also done in the context of multiprocessor datalbaaehines [124]. An algorithm for
evaluation of valid-time natural join has been presentedSby et al. in [192]. Optimization of

www.manaraa.com

4.7. TEMPORAL ODBMSS 43

partitioning in temporal joins has been described by Zu2®0]. Other important work includes
aggregation algorithms [116], a study of parallel aggregefi72], and coalescing [25].

In the context of query processing in temporal ODBMSs, weanly aware of one paper, on
parallel query processing strategies for temporal ODBM$iyn and Su [94].

4.7 Temporal ODBMSs

The area of tempor& DBMSss still immature, as is evident from the amount of reseandhis area,
summarized in th@emporal Database Bibliographyjast published in 1998 [216]. The main reason
for this low research activity is probably the number of gesb still unsolved in the less complex
case of temporal RDBMSs.

Most of the work in the area of temporal ODBMSs has been dorgaia modeling, while less
have been done on implementation issues. systems haverbplemmented [24]. Common for most
of these, is that they have only been tested on small amotiniata, which makes the scalability
of the systems questionable. In most of the applicationsarndeere temporal support is needed, the
amount of data will be large, and scalability is an importaatie.

In the area of temporal ODBMS, we are only aware of one prpmty?OST/C++ [202]. How-
ever, the indexing technique used in POST/C++ is not salaBbod performance is only possible
as long as the OID index fits in main memory (see Section 8.2 tlescription of the indexing in
POST/C++). In addition, there are implementations of terapobject data models on top of tradi-
tional ODBMSs, for example TOM, built on top of;(194].

4.8 Summary

We have in this chapter given a short introduction to the teoogy and most important issues in tem-
poral database management. For more in depth discussitwe tgsues, we refer to the publications
cited in this chapter.

www.manaraa.com

44 CHAPTER 4. TEMPORAL DATABASE SYSTEMS

o AJLb

www.manharaa.com

Chapter 5

Log-Only Database Management
Systems

Most current database systems are based on in-place upddtolata combined with write-ahead
logging. In this chapter we describe the alternative loty@pproach, and describe its advantages
and disadvantages. We describe the page-based and obgect-alternatives, and why we consider
the object-based alternative as the most interesting. Wéhfihe chapter with an overview of systems
that are based on log-only or related techniques.

5.1 The Log-Only Approach

In a log-only approach, data as well as metadata are writiatiguously to the log. Already written
data is never modified, new versions of objects or pages amgl\iappended to the log. Logically,
the log is an infinite length resource, but the size of the glaystorage is of course not infinite.
This problem is solved by dividing the physical storage ilaige, equal sized, physicaégmentsas
illustrated in Figure 5.1. A typical segment size will be retorder of 512 KB to 1 MB. When all
data residing in one segment is outdated or moved to anctigenent, the segment can be reused. In
the description in this chapter, we will assume that the &xides on disk only, but in general, the log
can also reside on tertiary storage. The log also contieskpoint blockswhich are used to store
checkpoint information. The checkpoint blocks are storefixed positions in the log.

Writes are always done sequentially, normally one segmeatteme. This is done by writing
data and index nodes, possibly from many transactions, énvatte operation. The segment size is
a tradeoff between different, partly conflicting, goals:irtgorove write efficiency, it is desirable that
the segments written are as large as possible. On the othdr lssige segments can make response
time longer, because writing large segments will block fmd operations, and we have to wait for
more transactions during group commit. Smaller segmenlisce=the blocking time for waiting read
operations, but they also result in less efficient writingg a larger number of segments (which means
more overhead).

Because data is always written to a new place after having bpeéated, an index is necessary to
be able to subsequently retrieve the data. This index st also written to the log, interleaved with
the data. If the granularity of data is objects, an OID ind®XXX) is needed, and if the granularity
is pages, a page index is needed (in the latter case, a pag#iéds part of the OID of an object,
similar to physical OIDs in traditional ODBMSs). The graanty of reading is object or pages.
When a stored object or page has to be retrieved, only theediesbject or page is read, not the whole

www.manaraa.com

46 CHAPTER 5. LOG-ONLY DATABASE MANAGEMENT SYSTEMS

Volume| Segment | Segment « » x| Checkpoint | ..a| Segment Segment
Info 0 1 Blocks N-2 N-1

Figure 5.1: Disk volume structure.

Log: | POVO| P1VO(P2VO] P3V(IDX(P2V1| IDXY

Figure 5.2: Data and index in a log-only ODBMS.

segment it is stored in.

5.1.1 Example of Log Writing

We now give an example to illustrate the log writing. In thi@mple, the data granularity is a page,
and a page index is interleaved in the log. Which page tcesstniwvhen an object is requested is given
from the OID of the object, which contains a page identifier.

Figure 5.2 illustrates how data pages and index nodes addaved in the log. On top of the
figure is the logical log, which is a sequence of pages. Pagested BV j are data pages, wheie
is the page number, anydis the version number or timestamp of the page. Pages detid¥dare
index pages. The index pages will in general be part of arxitrée, but to keep this example simple,
we assume the number of pages is low enough to be able to Htordex entries on one page.

At time ¢, a transaction allocates four pages, which are written@ddl. After the transaction
commits, the index node IDX0 is written, so that pages caer la¢ accessed via this index. Later, at
time ¢, a new transaction modifies page number 2 (whose first verggsndenoted P2V0). The new
version of the page (page P2V1) and a new version of the iriddeX node IDX1) are written to the

log.

www.manaraa.com

5.1. THE LOG-ONLY APPROACH 47

Cleaning
Current
Start on new, segment
clean, segment full, start writing

to a new one

Figure 5.3: Segment states.

As can be seen from the figure, the previous versions of pagestithstored in the log, in addition
to the current versions. The two versions of the databas#ustated in the figure, with arrows from
the respective index nodes. Index node IDX0 indexes thebdaéaas of time, and index node
IDX1 indexes the database as of time As illustrated in this figure, only the current versions ¢en
accessed from IDX1. If we want to be able to access old vessiblata, we can use a multiversion
index.

Note that even we in this example write data and commit seglign this is not necessary in
practice. As will be described in more detail later in thiegls, data from different transactions and
committing transactions can be interleaved.

5.1.2 Log Operations

A segment can be in one of three states, as illustrated inré-§3. A segment starts incdean state
i.e., it contains no data. The segment currently being ewmito, is called theurrentsegment. When
the segment is full, we start writing into a new segment. Té® segment now goes from tlokean
state, tocurrent The previous segment is noghirty, it contains valid data (note that dirty in this
context has nothing to do with main-memory state versus shiate, as the term is most frequently
used). Information about the status of the segments is kepieisegment status tab&ST), which

is kept in main memory during normal operation.

If system load is low, or transactions are mostly read-aoyy small amounts of new data will be
created. In this case, update transactions in the commsepheaiting for data to be written to disk,
will experience long delays if we try to fill up the segmentsadoe we write. This is not acceptable, and
can be solved by writing subsegments (also called partgahsats). When writing subsegments, we
write more than one logical segment into one physical segink@m example, if the physical segment
size is 512 KB, we can instead write 4 subsegments of size B¢ the physical segment.

At regular times, a checkpoint operation is performed. la theckpoint operation, we write
enough information to the log to make the current positiothim log a consistent starting point for
recovery.

Recovery in a log-only database can be performed very fiasg $here is no need to redo or undo
any data. Only segments written after the last checkpoigtirie be processed. At recovery time
we simply do an analysis pass from the last known checkpoittig end of the log, where the crash
occurred:

As data is updated or deleted, old segments can be reusecatddpan deleted data will leave

However, as we shall see later, it can be beneficial to extemdmount of data that needs to be read at recovery time,
to increase performance under normal operation.

www.manaraa.com

48 CHAPTER 5. LOG-ONLY DATABASE MANAGEMENT SYSTEMS

behind a lot of partially filled segments, the data in thesar menpty segments can be collected and
moved to the current segment, thus freeing up space in theegithents and making the old segments
available for reuse. This process is calddaning For each segment, the SST contains a live byte
counter. When data is deleted, this counter is decremesetiat we know which segments are good

candidates for cleaning.

5.2 Advantages of a Log-Only Approach

Because the log-only, no-overwrite approach, is radidadiffgrent from the techniques used in current
systems, it is appropriate to describe the advantagessoéfgproach.

Transparent Compression of Data. Objects are not written to the same physical location every
time, and as a result, there is no need to reserve space forakienum size of the compressed object.
Even if compression ratio and the corresponding storagectiange, no space is wasted.

Easier On-Line Backup. The written segments are time stamped, and with a no oversiriategy,

it is enough to know the last time of backup to know where backwould be started now. Backup
could also be done on-line, and again, even if we stop backgnuwhe load is high, we know where
to continue in less busy periods.

Flash Memory. Very high performance can be achieved if we use fast nortil@lmemory instead
of disk. One example of such an storage technology is flashanerflash memory is byte readable,
and fast, but write/erase has to be done blockwise. This suitorage strategy with no in-data
modifications.

Write-Once Memory. With write-once storage, for example optical disks, thexaineed for a
no-overwrite strategy.

RAID Technology. Disk access times and bandwidth improves at a much lowertinaie main
memory, and parallel disk systems are necessary to get gbrmance. To benefit from RAID
technology, the write blocks have to be much larger thandhised in traditional systems. In addition,
in normal systems, sequential writes are only about 3-5difaster than random writes, while in
RAID, sequential writes can be up to 20 times faster thanoandrites [196]. One of the reasons
for this difference is the writing of parity blocks, which mecessary in order to be able to do media
recovery in the case of a disk failure.

High-Bandwidth Applications. In many supercomputing applications, and more recently @ls
OLAP applications, computations are done on large mat@xesarrays. To be able to do operations
on these large structures, it is often necessary to break theo chunks which can be processed
independently. It is necessary to retrieve and store thheeks efficiently. The same applies to
storage of multimedia data, for example video. Until nowlydile systems have been able to offer
the desired performance. However, there is a demand for sdrtiee services offered by database
systems in these areas: access control, concurrency kostieb recovery. However, performance
close to file system performance is necessary for a DBMS tgpkcable.

www.manaraa.com

5.2. ADVANTAGES OF A LOG-ONLY APPROACH 49

Group Commit. Group commit, in addition to giving us larger writes, alseag opportunity for
more intelligent clustering of objects from different teactions.

Fast Crash Recovery. The log-only approach has similarities to shadow storagenEhough the
use of shadow storage can result in performance problenadsathas a very nice and interesting
feature: very fast crash recovery. By never updating icg@laecovery issues can be solved much
easier.

Temporal Database Management Systems.Keeping old versions comes at little extra cost in a
log-only DBMS. Given a log-only DBMS, realizing a temporaB®IS should not add much extra
cost.

Cache Coherence. Versioning/timestamping can be exploited in cache coleer@notocols in client-
server environments, as is done in BOSS [119].

Nomadic Computing. Objects and segments are timestamped. This can also kedtit maintain
consistency in client databases that are off-line partetitihe. If these at regular times are connected
to a server, they can be made consistent by uploading chaimgesthe last connect.

The advantages listed above indicate that the log-onlycambris highly interesting, but it should
not come as a surprise that these advantages do not comedoiTie log-only approach has similar-
ities to other no-overwrite strategies, for example thedshapage approach, and it also inherits the
nasty side of shadowing: after a while, data becomes umckct However, for several reasons, we
expect that this will be less of a problem with our approach:

e The increased amount of main memory can to a large degreeaswsage for the lack of clus-
tering.

e The access pattern is supposed to be more direct and navigatn an ODBMS than in a
RDBMS.

e Some systems are mainly write-once systems (for example ®8DBs), and if a large batch
is loaded at a time, we can get very efficient clustering.

It is also possible taeclusterthe database when needed, although this can be costly wiid la
amounts of data. This can be done as a part of the cleaninggmoevhich is performed asyn-
chronously. While this at first glance might look as if we héwelo twice the work to get the same
result, compared to other systems, it is not necessarilylfspou use write-ahead logging (WAL),
you also have to write the data twice, to the log as well as¢adtitabase itself. It is also important
to remember that reclustering is also necessary in tragiti@BMSs. Traditional clustering works
well as long as the access pattern is static, but if the aqssn changes, the database have to be
reclustered.

The cleaning process can also be utilized to do dynamic aaptiad clustering. With the advent
of persistent programming languages that need efficiepatifor garbage collection, for example
persistent Java, it is possible that the garbage collecémorbe done as a part of the cleaning process.
In this way, the effective cost of the cleaning can be reduced

www.manaraa.com

50 CHAPTER 5. LOG-ONLY DATABASE MANAGEMENT SYSTEMS

In the case of a temporal DBMS, a kind of continuous reclusgeis also needed in traditional
systems. If you want to keep previous versions of data, alhevant to keep the current set clustered,
you have to move the old version before inserting the new.

5.3 Alternative Realizations

There are two alternative ways to realize a log-only ODBN&ge-basedand object-based The
most important difference between these two is how objesralexed. In an object-based design,
indexing is done at object granularity, with logical objééntifiers, while in a page-based design,
only the pages are indexed, and the page an object resideshamdcoded into its object identifier.

5.3.1 Page-Based Designs

In page-based designs, the log is seen as one large pdrsidtizass space. When an object is created,
itis allocated space from this address space. The pagegsitenwo the log, similar to the example in
Figure 5.2. The objects are referenced by a persistent-meadaress (a page identifier is included in
the OID), and are retrieved via the page index which is ietaréd in the log. If an object is modified,
a new version of the page(s) it resides on is written backeddb.

The main advantage of the page-based approach is ease efmentiation. However, it has some
of the same problems as traditional page servers:

e Even if only a small part of the page is modified, the whole phag to be written back. If
objects are not well clustered, this will give low effectieite bandwidth.

¢ With bad clustering, main-memory buffer utilization wilklibad as well.

e Reclustering is difficult, the indexing in a page-basedgle$ similar to the use of physical
object identifiers in a traditional system, even though tieation of the pages in a log-only
system changes, an object is bound to one page during tisiée

e Variable sized objects are difficult to integrate into thg@approach, since the space is allo-
cated when the objects are created. This makes it diffic@biploy compression.

In addition to these well known problems from traditionabpaservers, a page-based log-only
ODBMS also makes transaction management difficult. To apaigk level locking, you essentially
need to have 1) an additional log to keep track of page updatey use ad-hoc techniques to solve
the problem. Both solutions are likely to hurt performanoe acrease complexity.

Two page-based ODBMSs are Texas [189] and Grasshopper Baied on the documentation
of the commercial ODBMS MATISSE [134], it is also possiblatiMATISSE is page-based, but this
has not been possible to verify.

5.3.2 Object-Based Designs

The alternative to a page-based design, is to index objéetstlg. In this case, only the object (or
a delta object) needs to be written to the log when an objetiogdified. This is especially useful if
good clustering is difficult. Dynamic clustering can be eayeld to give a good clustering. This is
possible because clustering can change with time, acegptdithe access pattern. It is also possible
to get all of the other benefits of log-only systems, as desdrpreviously in this chapter.

www.manaraa.com

5.4. SYSTEMS BASED ON LOG-ONLY RELATED TECHNIQUES 51

POSTGRES Relation

Page Page Page U Page Page Page
POSTGRES File

Figure 5.4: POSTGRES file.

m Initial Delta
Record Record Record
Anchor
Point
?elc)(frd \ Initial Delta
able Record Record
Delta Delta
Record Record
POSTGRES Page

Figure 5.5: POSTGRES page.

The most important disadvantage with the object-basedappr is that more index updates might
be needed, because individual objects are indexed, andhaewages. We will later in this thesis
develop techniques to minimize this disadvantage.

Based on the advantages and possibilities of an objectilubesgn, we see it as the most interest-
ing approach, and Vagabond, which will be described in tetthe rest of this thesis, is object-based.
In the rest of this thesis, we writeg-onlyas short for a log-only object-based design.

5.4 Systems Based on Log-Only Related Techniques

We will now present systems that employs log-only relatetnéques: POSTGRES, log-structured
file systems (LFS), DBMS based on LFS, and the log-structhigtdry data access method (LHAM).
We also present other work, based on the ideas presentedsia sections.

5.4.1 POSTGRES

No-overwrite strategies have a long history, for exampleshadow-paging recovery schemes, like
the one used in System R [5]. The best known log-only DBMS, mathably the first as well, was
POSTGRES [195]. POSTGRES wasetended relational database systemmich actually can be
said to employ a no-log strategy rather than log-only.

Data in POSTGRES were stored in relations, which were stioréites. Pages were allocated or
deallocated for a file on demand, and were linked togetheliuasrated in Figure 5.4.

As illustrated in Figure 5.5, each page in POSTGRES hahahor table used to retrieve records
stored on a page. When a record was created, space wasedléoathe record. When records were

www.manaraa.com

52 CHAPTER 5. LOG-ONLY DATABASE MANAGEMENT SYSTEMS

Anchor Point

Initial Delta Delta Delta
Record / Record Record Record

Forward
Pointer

Figure 5.6: POSTGRES record.

updated, they were not updated in-place on the page, ratbefa record was created, which recorded
the changes from the previous version (illustrated in Faghu6). When a record was to be read, the
whole chain from the first record had to be traversed and pgee POSTGRES was optimized for
small recordg, and delta records should be on the same page as the initiatirec

Although POSTGRES introduced many novel ideas, the stoség¢egies did not gain much
success at that time. The main reasons for this, were sonmaisgroblems resulting from the way
records were stored:

e Read operations could be very expensive, because of tteedhains.

e POSTGRES usedfarce bufferpolicy. At commit, all data modified by the transaction had to
be written, giving a very high commit cost.

e Eventhough POSTGRES could be used as a basis for a tempokéSBe use of append-only
linked lists for each record was too inflexible and ineffitjean additional index was needed in
most cases, increasing the overhead.

¢ In common with other no-overwrite strategies, POSTGRES htdd the risk of declustering
relations.

5.4.2 Log-Structured File Systems

The no-overwrite idea was borrowed from POSTGRES and uskedjistructured file systems (LFS),
first presented by Rosenblum and Ousterhout [177] in theeSpFS, and later refined by Seltzer et al.
in BSD-LFS [185]. LFS has also been the basis for other systéonexample Spiralog [102, 212].

In an LFS, file and directory information is interleaved inog. File identifying information is
keptin inodes, similarly to Unix, and an inode map is useadtate the position of an inode in the log.
It is assumed that the active portions of the inode maps c&ejiiiein main memory. The granularity
of writing (and indexing) in LFS is pages.

LFS has also been shown to be able to benefit from the advantsted earlier in this chap-
ter. It has been shown to be very well suited for tertiary ager management [69, 117], in on-line
backup systems [78], and on-line data compression [36]ldmenting transactional support in LFS
is described in several papers by Seltzer et.al. [182, 184].

The most important bottleneck in an LFS is cleaning, esfigaiader heavy load, or when there is
little free space on disk. This has been studied in sever8l p&rformance improvement studies [19,
144]. This work has also resulted in improving the cleanichhiques and cleaning heuristics, and
on self-tuning.

2A large object interface was added later.

www.manaraa.com

5.4. SYSTEMS BASED ON LOG-ONLY RELATED TECHNIQUES 53

C
3
Co
C
1
COA /\
Main Memory Disk Tertiary Storage

Storage system

Figure 5.7: LSM with four components.

5.4.3 Log-Structured History Data Access Method

The log-structured history data access meth@dHAM) [143, 170] is based on théog-structured
merge-tregLSM-Tree) [169].

A LSM is based on a hierarchy of index components, where texrcomponent at each level
has a larger size than the index component at the previoesitethe hierarchy. We denote an index
componentC;. Component’; indexes a subset of componefit, ¢, i.e., component; is (much)
smaller thanC;..,. Component is in main memory, C ... C; are typically on disk and tertiary
storage (see Figure 5.7).

Updates are only done to componént. Entries fromC), not yet migrated to component; are
merged into componerdt; in batch, as a background process. In general, the samedgasidor all
the components in the hierarchy, entries frémot yet migrated to componet;; are merged into
componenC; ., as a background process.

The most frequently updated entries will typically be in tbeer levels of the hierarchy, because
each update of an entry will result in an insertion idtg.

As a result of the way updates are merged into the higher niedlieces, entries in component
C; are always as least as recent as entries in compdarjent When we search for an entry, we start
the search in componeni,. If we do not find the searched entry there, we continue withmanent
C1, component’; and so on, until we find the entry, or have reached the last oos1g. As long as
we do the search as described, we are also sure to get theeunest version, even though the higher
numbered components might contain outdated values.

Inserts and updates are only done to the first level indexitadontents of one level in the index
are asynchronously migrated to the next level. As a resiilgeda inserted or modified during a
certain time period will be in the same level. Search for datitten at a certain time is efficient, but
searching for the most recent version of certain data carobityc

The main advantage of LHAM is support for high insertion sat&hile also being competitive in
terms of performance.

5.4.4 Other Related Work

Most no-undo/no-redo recovery approaches share some dftnacteristics of the log-only approach.
We have already mentioned the shadow-paging algorithnd us8&ystem R. Other techniques are
differential files(also called deferred update and side files), anditiiabase cachdn the differential
file approach, updates are done to a new and previously uhaisgtibn, in a side file [77]. At regular

3Logging has to be used to be able to recover from main memduyda

www.manaraa.com

54 CHAPTER 5. LOG-ONLY DATABASE MANAGEMENT SYSTEMS

intervals, the contents from the side file are copied backeaoriginal file. The database cache [63]
uses a similar approach, but by assuming large main memdigrdunew algorithms can be used to
avoid some of the problems of the shadow page and side fil@apipes.

Other relevant work includes approaches to deferred upftatexample the BOSS approach [119].
BOSS employs WAL, but updates to the database itself canfeereéé. The difference between de-
ferred updates as used in BOSS and a log-only approach ithihédg-only approach takes it to the
extreme, there ignly the log. The advantage with the log-only approach is thatftaates to the
database are avoided.

5.5 Summary

This chapter outlined the basic principles behind a logr@DBMS based on LFS techniques. As
described in the overview of other systems based on logteslyniques, the log-only approach is not
new in itself, and even log-only systems can be said to bedbasesarlier techniques, for example
shadow-paging.

The summary of advantages of a log-only systems should sengemotivation to explore this
strategy further, but it should be emphasized that whethgrséem might be able to achieve high
performance has to be verified by analytical modeling or &tmans. In Chapter 14 we will use
analytical modeling to study the possible gain from usinggadnly approach. However, real evidence
can only be gained from an implementation of the approaaddd usreal applications. This is left as
further work.

www.manaraa.com

Part Il

The Design of Vagabond

www.manharaa.com

www.manharaa.com

o AJLb

Chapter 6

An Overview of Vagabond

In this section, we briefly describe the architecture of tagabond temporal ODBMS, which is used

as the context for the following chapters. The server aechiire is described, and we give a summary
of techniques that can be used to reduce the read costs inassiggtem. These techniques will be

described in more detail in the rest of this thesis. We dbscstorage objects, and we describe how
Vagabond can be incorporated into a parallel and distribatehitecture. We emphasize that this is
not the description of an implemented system, only a framlkeviar the design presented in the rest

of this thesis.

6.1 Server Architecture

Similar to the Shore ODBMS [39], we also use a peer-to-peshitcture. All application programs
in the system are connected to one server, running on the ssnkine as the application. This
server is the gateway to the DBMS, including remote serveftsife multiple client/multiple server
architecture in Section 3.4). Not all servers have dataest@cally. If all servers did, including those
running on office workstations, that would make it impossitd achieve high availability. However,
even if no data is stored locally, a server must be runningham node to make it possible for the
application program to access the DBMS. One advantage oafiproach is that it makes it possible
for several clients running on the same machine to utilizerarnon server-side cache. On the client,
client-side caching will be employed as well.

6.1.1 Client/Server Communication

A Vagabond server is aobject serve(see Section 3.6.1). The architecture of the server igiited
in Figure 6.1. A client normally operates against the Vagab@Pl, a client-side stub which provides
the mechanisms to communicate with the server. The commtimicwith the server is done via the
messenger

6.1.2 Server-Side Operation

The server is multithreaded, and all subservers run as aeptinreads. There is also one thread for
each transaction. To reduce thread creation costs, we ogelable threads. Recycling of threads is
done by having a fixed (but expandable) number of threads airiécplar type. These threads are
created when the server is started. When idle, they arengaiti anthread pool When a task is to

be started, it can be allocated one of the idle threads. Wheethtead has finished its task, the thread

www.manaraa.com

58 CHAPTER 6. AN OVERVIEW OF VAGABOND

Client Address Spaces
Client
Client Vagabond API
[Messencer—— L1 Messencer
| essenge 1 essenge |
Server Address Space

Subserver Application ODBMS Session|
Manager Subservers Subservers

SM API (Superset of Vagabond API)

Vagabond Storage Manager

Figure 6.1: The Vagabond server.

is returned to the thread pool. This saves the overhead afiogethreads, and the cleanup cost after
thread termination. Even though the use of threads incura ewst compared with an event driven
system, for example more locking overhead, thread-adinatisn, and thread-switching overhead,
multithreading makes it easier to exploit multiprocessamputers.

Each client that connects to the server starts the sessioaorinecting to th&ubserver manager
which allocates either a@DBMS session subserviiiread or arapplication subservethread to the
client. The allocated thread operates in the server addfesse on behalf of the client. Commands
and data are communicated through thessenger

6.1.3 Subservers and Server Extensibility

All communication between clients and the storage managdome via subservers. We have three
classes of subservers:

e Subserver manager
e ODBMS session subservers

e Application subserver

The subserver manager is only used when a session is startihcate the appropriate subserver, as
described above.

ODBMS session subservers and application subserverssiteestorage manager (SM) through
the SM API. Normally, ODBMS session subservers are used .liégipn subservers are extensions
to the system, making it easy to extend Vagabond. This idasiit@ features found in other systems,
for example the Value Added Server concept in Shore, andBladas/Cartridges in commercial
systems. However, for such a concept to be really benefiti@lODDBMS has to be object shipping

www.manaraa.com

6.1. SERVER ARCHITECTURE 59

rather than page shipping, so that the system is able to éilieobjects and do operations on the
objects, something which is impossible or difficult on pageser systems.

One interesting point here, is that the SM API is a supersah®fVagabond API, the client
interface stub. This feature makes it easier to implemedttast subservers as clients, before they
are added to the server. As subservers, they can communiithtelients through a messenger, as
illustrated in Figure 6.1.

6.1.4 Storage Manager

The storage manager is responsible for permanent storaglejexts. Its most important operations
include transaction management, secondary and tertiarggd management, and indexing.

Buffering data in main memory is done to reduce the amountatd cheeded to be transfered
between main memory and disk, and between individual senmportant buffers include the object
buffer, index node buffer, and object descriptor bufferdaject descriptor is an entry in the OIDX, see
Section 3.1.2, and will be described in more detail in Sed®id..2). These buffers can be dynamically
resized, to get optimal performance with changing accetsrpa. The cost functions derived later in
this thesis, and the papers in the appendixes, can aid imdgably deciding optimal buffer sizes.

6.1.5 Permanent Storage

All data in a Vagabond server is stored in a logical log, whicktored in one logicadata volume A
data volume consists of one or more storage devices. A statagce can be a secondary as well as
a tertiary storage device. Typical examples of storagecdsvare:

e A raw disk partition (on magnetic disk).

¢ A fixed size (but extendible) file on the native file system dating a disk partition. Running
our own system on top of the native file system gives an extra lef indirection. However,
allocating disk space on an (almost) empty disk will on mostlern file systems give a mostly
sequentially allocated file. This is done by creating a digk &nd writing as many blocks to it
as the size specified. The file can be extended or shrunk byntegyral number of segments.

e Optical disk.
e Tape.

e Flash memory.

Devices can be dynamically added to or removed from a datam®l Adding a device basically
increases the number of available segments in the volumiée védmoving a device is done by first
moving all data currently residing on that device to anotharice.

Even if disk space is cheap, it is still necessary for somdicgiwns to have data on tertiary
storage. This can be done transparently in Vagabond. fesgiarage is most often removable media,
for example optical disk or tape, which can be used in disktapd robots.

One of the devices in the data volume is calledrta device On this device, the most important
volume information is stored, and it also contains the chetk block. The checkpoint blocks should
be on a rewritable medium, so the root device will typicallydomagnetic disk.

www.manaraa.com

60 CHAPTER 6. AN OVERVIEW OF VAGABOND

6.2 Objects in Vagabond

In Vagabond, all objects smaller than a certain threshadwaitten as one contiguous object. They are
not segmented into pages as is done in other systems. Olgjersthan this threshold are segmented
into subobjectsand alarge-object indexs maintained for each of these large objects (this is done
transparently for the user/application). There are séveesons for doing it this way:

e Writing one very large object should not block all other saations during that time.
e A segmented object is useful later, when only parts of theaibs to be read or modified.

¢ Parts of the object can reside on different physical deyieesn on different levels in the storage
hierarchy.

The value of the threshold can be set independently forrdifteobject classes. This is very useful,
because different object classes can have different ogéeval characteristics. Typical examples
are a video and an index. When playing a video, you want texetrone large segment of the video
each time. On the other hand, when searching an index treeonly want to retrieve single nodes,

which usually have a small size. Similar for both video ardkxretrieval is that you only want a part

of the object. For other objects, the whole object will bedeskat once. One example is images. In
order to be able to display the image, the whole object is egeth that case, storing the image as
one contiguous object will be advantageous.

Every object version in Vagabond has an associated objscrigeor (OD), which contains the
OID, physical location, timestamp, and other administeatnformation. In addition, every subobject
has an associated subobject descriptor (SOD). ODs and S@Dewlescribed in more detail in
Section 8.1.2 and Section 8.5.2.

6.2.1 Typed Objects

It is not strictly necessary for the storage system to knosvtiipe of an object. Actually, in most
systems, an object is simply a chunk of bytes from the storageager’s point of view, and page
servers do not even have to know about objects, pages aleegltare about. However, storing type
information in the system can improve efficiency and perfamce considerably:

e Itis useful for type checking.
e It makes it easier to employ hierarchical concurrency ar&chniques.

¢ If the server knows the attributes and attribute sizes oflgeat, it is easier to support vertical
fragmentation in a parallel or distributed system. Thera#ave is that the application gives
“partitioning hints”, for example where in an untyped olijéds possible to partition it. Some
minimal information is also needed for reclustering ancbgge collection (at least one needs
to know where the pointers are).

e Typed objects are also necessary if the server shall be alii® tsome kind of server-side
filtering or method execution.

In Vagabond, meta information for an object class or typédessl in the database as an object, called
a class descriptor objedfCDO). CDOs can be versioned as other objects, which siraplgupport
for class version management.

www.manaraa.com

6.2. OBJECTS IN VAGABOND 61

CID \
Special object type
(Data field reserved for special object manager)
Maintain signatures?

Signature size

Large-object threshold

Subobject size

Navi gDesc size

Vacuuming age

Metadata

— Attribute information

— Signature calculation information

Figure 6.2: Class descriptor (CDO).

Every object in the system belongs to a “class” (not only egmaoming language class, for
example, it can also be an index class) as described in a CDCD@ is uniquely identified by a
class identifie{CID), and the CID is used in object descriptors (ODs) to iifgrthe class an object
belongs to. The structure and contents of the CID are disdussther in Section 8.1.2.

The structure of a class descriptors object (CDO) is sunmadrin Figure 6.2. In the case of
objects to be handled by special object handlers (see &e&204), thespecial object typélentifies
which special object handler should be used. Témerved fields reserved for the special object
handler, and can be used to identify index variants, for gtardifferent key types in the case of an
index. TheNavi gDesc sizeis the size of thenavigational descriptar A navigational descriptor
exists in some index objects, for example B-trees, whered{(ikey, poi nt er) tuple. The use of
theNavi gDesc will be further explained in Section 8.5.2 and Chapter 10.

Thelarge-object threshol@an be set to different values for different object clasessking sub-
object partitioning very flexible. Theubobject sizés the size of the subobjects in a large object (this
can be different for different classes).

Thevacuuming agés used for lazy vacuuming (see Section 12.6). If the tinmptaf the object
is older than the vacuuming age, the object can be removed.d&fault value of this attribute is a
null value, i.e., the objects in this class can not be vaculme

The CDOs can hold other associated meta information as typiGally attribute and value offset
information. This is also the place to store which attrilsusbould be used to create the object signa-
ture if that is enabled for the particular class (hash-basguohtures can be used to reduce the number
of objects that need to be retrieved from disk, this will besa#ed in more detail in Section 7.1).
Whether to maintain signatures or not, is defined byrttantain signaturedield. The size of the
signature is stored isignature sizeNote that using aignature sizef zero to imply that no signature
should be maintained, in stead of usingnaintain signaturedield, is not possible. The reason is
that we want to make it possible to later disable signaturit@aance for a class, without changing
the size of the ODs, which include the signature. If this fiomality was implemented by setting
the signature size to zero, we would have to reorganize tlegamt part of the OIDX to reflect the
changed size of the ODs.

The CDOs are stored in the log as objects. When a new classated;, the class descriptor object
is stored on all participating servers (full replicatiofjhe number of classes is in general small, so

www.manaraa.com

62 CHAPTER 6. AN OVERVIEW OF VAGABOND

the space used for this information will not represent a f@ob Additionally, the information in a
CDO will be frequently used, and it is therefore beneficidh&ve this resident at all servers. Creation
of classes is an infrequent operation, compared to objeettions, and the replication of CDOs will
not represent a performance problem. It is not likely thatpplication needs real time response to
class creations.

6.2.2 Temporal Aspects

Our storage structure is intended to be suited as a basis temporal DBMS. We maintain the
temporal information in the index, which makes retrievdlaént even without additional temporal
indexes.

6.2.3 Isochronous Retrieval

Some applications, for example video servers, do not waot e objects delivered at once. Rather,
they want part of it delivered at an appropriate rasmchronous retrieval One possible strategy
to solve this is two queues in the 1/0 system. One for “nornddta, and one for high-priority
audio/video data.

6.2.4 Special Objects

A large object can be viewed as an array of bytes, and retrigfvpart of the object is done by
retrieving a certain byte range of the object. This is notifiliexenough for some of the structures
that are stored as large objects, for example indexes. Té$tasetures are stored as large objects,
but the subobject index has additional information to suppmwre complex indexes. They can also
have different concurrency control and recovery chargttes. These objects, which we cajpecial
objects are handled bgpecial object handleravhich will be treated in more detail in Chapter 10.

6.2.5 Examples of Special Objects

Class descriptor objects, persistent roots, collectiordex structures and spatial data structures are
also stored as ordinary data objects. This has the advanfageking them an integral part of the
object system.

Collections

A collection is a collection of objects, for examples a sa farray or list with supporting methods
for inserting, removing, and testing for the existence oédain element. It also supports the use of
an iterator to access the elements of a collection.

Secondary Indexes

To make an ODBMS efficient, we need secondary indexes iniadda the OIDX. One-dimensional
as well as multi-dimensional indexes, which can be suittdsleemporal queries as well as for spatial
data, should be supported.

In Vagabond, indexes are also supposed to be stored asobjsetindex will often be a large
object. In many systems, all indexes have the same index (ibolek) size. In Vagabond, this can

ICollections are in some literature also caltmhtainers.

www.manaraa.com

6.3. READ AND WRITE EFFICIENCY ISSUES 63

be tailored, so that different indexes, for different objelasses, can have different index node sizes,
depending on expected and actual access patterns.

To be able to use this system as a basis for a GIS, it is negesshave support for spatial data
structures. Only very recently have commercial DBMS witatsgd support emerged, some with the
data structure implemented in BLOBs, other with more irdégpl extensions, such as Informix Uni-
versal Server's geodetic DataBlade module, DB2’s Spatigitier, and Oracle 8i/Spatial Cartridge.

Most ODBMS vendors do not have the infrastructure or the isgcture necessary to support
scalable spatial data management, and a client-side irudiettas is necessary. One example of this
is ObjectStore.

Persistent Roots

To be able to access the objects later, we need some hantiekerdatabase. This is typically done
by the use opersistent rootsA persistent root is @aamed objecti.e., a tuple consisting of a name (a
string), and an OID. The persistent roots are stored in dgters root object, which is an object with
a predefined OID. The persistent root object itself is anxnde

Multidimensional Arrays

The storage scheme we have described here is particulaphcabple to arrays, which are heavily
used in scientific computing. Subarrays are stored as aomigychunks in the segments, which will
give very good performance, even for read-only transastion

6.3 Read and Write Efficiency Issues

The system is write-optimized, and as a result, objectafiand index lookup can become a serious
bottleneck. We employ some techniques to reduce the nunmuesiae of read operations. These
techniques can improve performance considerably, witteramarginal write penalties:

e Careful layout of objects.
e Hash-based signatures.
e Clustered index.

e Object compression.

The last one, object compression, will also improve wrificefncy, as it reduces the amount of data
that needs to be written to disk. In addition to the techrsgisted above, we also employ writing of

delta objects to further reduce the amount of data needee ¥eritten to disk (this technique reduces
the write cost, but increases read cost), and a number ox iopgmizations as will be discussed in

Chapter 8 and Chapter 9.

6.3.1 Careful Layout of Objects

Several strategies are used to store objects on disk in ahetydduces read cost. One important
strategy is to try to store related objects close to eachr othen objects are stored on disk. Because
we employ a no-overwrite strategy, heuristics can be usegli@er objects in segments that are to be
written to disk, and during cleaning of segments.

www.manaraa.com

64 CHAPTER 6. AN OVERVIEW OF VAGABOND

Another possible strategy is to use heuristics to arrangectsin a segment so that they do not
span more disk blocks than necessary (boundary alignmehteammdering). In this way, a minimal
number of disk blocks needs to be read when data is retriewed disk.

6.3.2 Signatures

We employ a technique similar to signature files to reducentimaber of objects that needs to be
retrieved. This can be done with a very small extra cost inat#gpd. This is described in detail in
Section 7.1.

6.3.3 Clustered Index

The OIDX is organized in a way that clusters OIDX entries fojeat belonging to a physical container
(a collection of related objects, to be described in moraitiet Section 8.1.1). A physical container
can for example be used to store all objects from a class fapticitly maintaining class extents),
or all objects in a collection. This can makes set-basediegenore efficient. If using signatures as
well, the actual number of retrieved objects can in many iggdve very low, as we in this case only
have to scan the relevant part of the index and the objectsmaitching signatures.

6.3.4 Object Compression

To further reduce storage space, and disk bandwidth, abgeat be compressed before they are writ-
ten. This is described in Section 7.2. With a log-only apphpabjects are written to a new location
every time, so that we only use as much space as the size afitiemtcversion that is written.

6.3.5 Delta Objects

Often, only a small part of an object is changed when a newarers created. In this case, much can
be gained if only the changes are written. This is espectalycase if an object is a write hot spot
object. An object that only contains the changes from thieMassion of the object, is calleddelta
object Unlike traditional systems, that only use delta objecteethuce the log writing, a delta object
in a log-only database system can be an object version owitsice., the complete version will not
necessarily be written.

The delta object itself can be made at a low cost, for examplesing the following algorithm:

1. Do a bitwise XOR on the new and the old version of the objé@tie resulting bit string will
now have 1's only in positions where there is difference eetwthe old and new version.

2. The resulting bit string can be run-length encoded, ardélulting delta object will be very
small if there has been only small changes between the tvetoves.

This algorithm is most beneficial when the objects have timesabject length and fixed size at-
tributes. The algorithm can easily be extended and imprdeegxample by only considering updated
attributes.

In general, generating and writing a delta object is onlgvaht if the previous version is already
in memory. This is usually the case. If not, an inefficientaliation read of the previous version
would be needed to be able to generate the delta object.

It is not always beneficial to write delta objects in the cakkR@e objects. Many large objects
are relatively static objects, and when updates are dorge [garts of the affected subobjects (a large

www.manaraa.com

6.4. PARALLELISM AND DISTRIBUTION IN VAGABOND 65

Server Group Server Group

| Server | | Server | | Server | | Server |
S S
| Server | | Server | | Server | | Server |
Server Group 3 C Server Group
| Server | | Server | | Server | | Server |

| Server | | Server | | Server | | Server |

Figure 6.3: Vagabond system architecture.

object is physically partitioned into subobjects) are nfiedi Other large objects, for example index
structures, are usually more dynamic, and updates onlgtadfemall part of one subobject. For such
objects, writing delta objects is beneficial.

The disadvantage of writing only a delta object is, of couthat previous versions have to be
retrieved to reconstruct an object at read time. This proldan be reduced by writing the complete
version of an object when an object is to be replaced in théebdiie to buffer replacement policy
(this is done in addition to writing delta objects, i.e.,f@bject has been updated several times before
it is discarded from the buffer, several delta objects mighte been written). In this way, reading can
be done efficiently later (note that because of the log-otrgteyy, this writing is relatively cheap).
Reading the chain of objects is only needed if the DBMS hashexé before a non-delta object has
been written. This strategy is most beneficial for non-terapobjects. In the case of temporal objects,
we also need to reconstruct previous versions, and not belyrtost recent version. The described
strategy does not solve that problem, but the problem cardigced by writing complete versions at
regular times, for example a full object version for everthrdelta version.

6.4 Parallelism and Distribution in Vagabond

The Vagabond architecture is a system designed for higlomeaince, and one strategy to achieve
this, is to base the design on the use of parallel serversedBbare declustered over a set of servers,
which we call aserver group The declustering is done according to some declusteriagegly, this

is further discussed in Section 11. The servers in a senamycan cooperate on the same task, and
in this way, it is possible to get a data bandwidth close tcatligregate bandwidth of the cooperating

servers. To benefit from the use of a parallel server grotssupposed that the servers in one server
group are connected by some kind of high speed communication

www.manaraa.com

66 CHAPTER 6. AN OVERVIEW OF VAGABOND

The demand for support dfistributed databaseis increasing, and to satisfy this, we use a hybrid
solution: a distributed system, with server grouffsgure 6.3). In this way, objects are clustered on
server groups based on locality as is common in traditiorsafiduted ODBMSs, but one server group
can contain more than one computer (a kind of “super server”)

6.5 Summary

This chapter described the overall architecture of the Wagd ODBMS, and the main features. The
rest of this thesis will concentrate drowto make a system that can deliver support for these fea-
tures. We will identify potential bottlenecks, and deseritow the impact of these bottlenecks can be
reduced.

www.manaraa.com

Chapter 7

Reducing the Data Transfer Volume

In this chapter we describe two techniques that can be useebtae the amount of data transfer
between memory and disk as well as between different sersignsatures and data compression. The
techniques are well-known, but previously, only limitedsess has been achieved from using these
techniques. However, some of the factors that previoushe naduced their practical application are
not present in a log-only system, making the gain from ushegé techniques larger in a log-only
system than in a system based on in-place updating.

7.1 Signatures

A signaturé is a bit string, which is generated by applying some hashtfonon some or all of the
attributes of an object. By applying this hash function, wéa&signature of’ bits, withm < F bits
set to 1. If we denote the attributes of an objecdasA,, ..., A,, the signature of objedtis:

S; = Sh(Aj,... 7Ak)

whereS), is a hash value generating function, adg ... A; are some or all of the attributes of the
object (not necessarily includingll of A;,..., A, S) does not necessarily use all its arguments).
Similar to hashing in general, two objects with the same aigre may or may not have the same
(shallow) valueput objects with different signatures are guaranteed tfedifThe size of the signature
is usually much smaller than the object itself, and it haditi@nally been stored separately from the
object, in a signature file.

When searching for objects that match a particular valug pipssible to decide from the signature
of an object whether the object is a possible match. By firstkimg the signatures when doing a
perfect-match querythe number of objects that has to be retrieved can be redddes can consid-
erably reduce the total retrieval cost, because the sizeedagignature file is smaller than the total size
of the objects involved in the query.

A typical example of the use of signatures is a quéryto find all objects in a set where the
attributes match a certain number of values:

Aj:’l)j,...,Ak:’Uk

This can be done by calculating the query signatyref the query:

"Note that the ternsignatureis also used in other contexts, e.g., function signaturdsraplementation signatures.

www.manaraa.com

68 CHAPTER 7. REDUCING THE DATA TRANSFER VOLUME

Sq = Sh(Aj = Vj,... ,Ak = T)k)

The query signaturs,, is then compared to all the signaturgsin the signature file in order to find
possible matching objects. A possible matching objedtpg, is an object whose signatusgis equal
to s, (in the case of signatures generated by superimpositioichwhill be discussed below, a drop is
a signature where all bit positions set to 1 in the query sigeaare set to 1 in the object’s signature).
The drops form a set of candidate objects. An object can hamatahing signature even if it does
not match the values searched for, so all candidate objewts o be retrieved and matched against
the value set that is searched for. The candidate objedtslthaot match, i.e., objects with the same
signature as the query signature, but not matching the gaexcalledalse drops

Signature files have previously been shown to be an alteentiindexing, especially in the con-
text of text retrieval [15, 66]. They can also be used in gahguery processing, although this is still
an immature research area. The main drawback of signatess i that signature file maintenance
can be relatively costly; every time the contents of an digbange, the signature file has to be up-
dated as well. To be beneficial, a high read to write ratio essary. In addition, high selectivity is
needed at query time to make it beneficial to read the sigaéitarin addition to the candidate objects.

We will now describe in more detail how signatures are geedrasignature storage alternatives,
and how signatures can be used in an ODBMS without requirimglaread to write ratio.

7.1.1 Signature Generation

The methods used for generating the signature depends améneled use of the signature. We will
now discuss some relevant methods.

Whole Object Signature

In this case, we generate a hash value from the whole objb.value can later be used in a perfect-
match search that includes all attributes of the objects Tiethod is only useful for a limited set of
queries, where all the attributes of the object are invoivetthe perfect-match search.

One/Multi-Attribute Signatures

A more useful method is to computer the hash value of only d¢imd@te of the object. This can be
used for perfect-match search on a specific attribute. Qfteuery is on perfect match of a subset of
the attributes, similar to the example above. If such qgexie expected to be frequent, it is possible to
generate the signature from these attributes, again ookyrig at the subset of attributes as a sequence
of bits. This method can be used as a filtering technique iremomplex queries, where the results
from this filtering can be applied to the rest of the query pratb.

The one/multi-attribute signature method is not very fleilas it can only be used for queries
on the exact set of attributes used to generate the signdtutbe case of small sized attributes in a
traditional system, an index would in general be more slétalts search performance will be better,
and it supports range queries. In the case of large attsbiitss possible to use the signature instead
of the whole attribute in the index. Using one/multi-atiri® signatures when these signatures can be
embedded into the OIDX, can still prove to be beneficial (sppefdix F).

www.manaraa.com

7.1. SIGNATURES 69

Superimposed Coding Methods

The real power of signatures comes when siaperimposed codingechnique is used. When this
techniques is employed, we get a signature that can be usditfésent perfect-match queries, where
the different queries involve different sets of attributes

When superimposed coding is used, we first compute a septeatrite signaturesy (A;) for
each attribute in the object. The object signature itsetfeserated by performing a bitwise OR on
each attribute signature. For example, for an object witttrbates, the object signature is calculated
as:

si = Sp(Ag) OR Sy (A1) OR Sp,(A2)

This results in a signature that can be very flexible in use,cae do a perfect-match search on
any subset of attributes. When comparing a search signatiineobject signatures generated by
superimposed coding, an object is a drop if all bit positieasto 1 in the query signature are set to
1 in the object’s signature. It is also possible that othepbsitions in the object’s signature are set
to 1, but that is not relevant for the actual query. The othisrdet to 1 have been set as a result from
attributes not part of the query.

Superimposed coding can also be used on set-valued asifaset-valued attribute is an attribute
that itself is a set). In this case, a signature is generatedach member of the set. These signatures
are OR-ed together to generated the attribute signaturelfP§. By using this technique, queries
of the typeis-subsethas-subsethas-intersectiorandis-equal can be answered efficiently, in many
cases with less cost than alternative methods, for exansig mested indexes.

7.1.2 Signature Storage

Traditionally, the signatures have been stored in sepéitag outside the indexes and objects them-
selves. A signature file contains the signatuwg$or all objects: in the relevant set. The size of a
signature file is in general much smaller than the size of ¢tegion/set of objects that the signatures
were generated from, and a scan of the signature file is mshdestly than a scan of the whole
relation/set of objects. The most well-know storage stmed for signatures arequential Signa-
ture Files(SSF) andBit-Sliced Signature FileBSSF), which are most suitable for relatively static
data [66]. To better support inserts, deletes, and updsagsyal dynamic signature file methods have
been proposed, based on multi-way trees and hash files.

Sequential Signature Files

In the simplest signature-file organization, SSF, the digea are stored sequentially in a file. A
separatepointer fileis used to provide the mapping between the signatures andbileets. In an
ODBMS, this pointer file will typically be a file with OIDs, onr each signature. During each
search for perfect match, the whole signature file has todx /&/hen an object is updated, one entry
in the signature file needs to be updated.

Bit-Sliced Signature Files

With BSSF, each bit of the signature is stored in a separaesid that with a signature siZe, the
signatures are distributed oveérfiles, instead of one file as in the SSF approach. This is eapeci

2A nested index is a B-tree variant where the leaf node ergriesomposed of a key value and the OIDs of the objects
that have this key value in the indexed attribute [14].

www.manaraa.com

70 CHAPTER 7. REDUCING THE DATA TRANSFER VOLUME

useful if we have large signatures. In this case, we only hawearch the files corresponding to the
bit fields where the query signature has a “1”. This can redoesearch time considerably. However,
each update implies updating up kbfiles, which is expensive. So, even if retrieval cost has been
shown to be much smaller for BSSF, the update cost is muclehidghus, BSSF based approaches
are most appropriate for relatively static data.

Several improvements of the BSSF have been proposed, masemf imply some vertical or
horizontal decomposition [87, 113, 172]. Variants that sgmature compression and multi-level
signatures also exist.

7.1.3 Signatures for Fast Text Access.

Fast text access has been the main application of signatumgsnost of the publications on signatures
have been related to text access methods [15, 65, 66, 1202 P0p In this case, the signature is used
to avoid full text scanning of each document, for example search for certain words occurring in a
particular document.

Documents are first divided into logical blocks, which aregais of text that contain a constant
number of distinct words (if most documents are small ancehayproximately the same size, this
step is not strictly necessary). A separate signature isrgégd for each of these logical blocks, i.e,
there is in general more than one signature for each docurireatder to generate a block signature,
a word signature is generated for each word in the block, hadbtock signature is generated by
OR’ing these word signatures.

When searching for documents containing one or more péatievwords, the signature file is read
first, and each block signature is compared with the quemasige (the signature generated from
the query words). This gives us a set of candidate documentsafididate blocks), where the actual
search words might occur. These documents have to be edreavd searched.

Example

To illustrate the advantage of using signatures for fasgtdegess, consider a collection of 1024 techni-
cal documents. The average document has a size of 64 KB, atairnt®600 distinct words. Without
signatures (or an index), all documents have to be retrigveag want to find which documents
contain one or more specific words. The total data volumedd weill be 1024 x 64 KB= 64 MB.

The data volume to be read can be reduced if signatures adeysdp In this example, assume a
signature size of' = 4096 bits, and that these are stored in an SSF. We do not divideatwentents
into logical blocks. The size of the signature file will Be= 10245 = 1024 « 512 = 512 KB.3

When searching for documents containing one or several syovd first read the signature file.
For all documents with matching signature, we have to readdtftcument. The probability that a
retrieved document does not contain the actual word, isleéqube false drop probability [66]:

Fln2

1
F; = (E)m,wherem =

In the case of a text documeri®, is the number of distinct words in a block. In this examplelyon
Fy = 0.037, i.e., 3.7% of the retrieved documents, will be false dropwus, instead of reading
64 MB, we can satisfy the query by only reading the signatleeafid the candidate documents. The
number of documents to retrieve depends on the selectivitheoquery. If we search for a very

3If a document identifier is included in the signature file size will be slightly larger than this.

www.manaraa.com

7.1. SIGNATURES 71

common word, most of the documents have to be retrieved,flw isearch for a combination of
words, the number of documents to retrieve will in most cémew.

How to find the optimal signature size is an issue when usiggasures, and the size depends
on several factors, including the number of candidate derim A large signature reduces the false
drop rate, but increases the size of the signature file, whésito be read in its entirety for all queries.

In the example above, we assumed that the signatures weeel gtican SSF. Another alternative
is to use BSSF. In this case, the signature files would ocdupygdame amount of disk space, but on
average, only half of them had to be read to answer a querg.might at first seem like an advantage,
but in practice, accessing extra files implies large ovatheso BSSF would not be beneficial with a
small number of signatures as in this example.

7.1.4 Storing Signatures in the OIDX

In a write-optimized system, object retrieval can becomettidneck. This bottleneck can be reduced
by including the object’s signature in the OIDX. In Vagabptite OIDX is updated every time an
object is modified, and if we store the signature in the olgemftject descriptor (OD) in the OIDX,
the additional signature maintenance cost is only margifiais is different from traditional systems,
where the signature file has to be updated every time an dbjapdated, reducing its effect. In those
systems, a large read to update ratio is necessary if thef gégnature should be beneficial.

Perfect-match queries can use the signatures in the OID¥doce the number of objects that
have to be retrieved, as only the candidate objects, wittchiteg signature, have to be retrieved.
When the signature is stored in the OD, scan queries can ke eafboiently by simply doing a scan
over the relevant part of the OIDX, and only the candidate=cisj need to be retrieved. Because
the OD is accessed on every object access in any case, thmaadsignature-retrieval cost is only
marginal.

Optimal signature size is very dependent of data and qu@sstyln some cases, we can manage
with a very small signature, in other cases, for example endghase of text documents, we want a
much larger signature size. It is therefore desirable tolde @ use different signature sizes for dif-
ferent object classes. In any case, we have a tradeoff betsigeature size and additional signature-
maintenance cost. Even though a small signature has ontyimaheffect on OIDX access cost, using
larger signatures will increase the cost to a significargllev

The maintenance of object signatures implies computdtmrerhead, and is not always required
or desired. Whether to maintain signatures or not can bedddadn a per class basis. This is also
the case with which attributes to use when calculating theadure. This information is stored sepa-
rately for each class, in the class descriptor object (setd®e6.2.1). To avoid complex index node
management, all ODs in a physical container have the samatsig length.

A more detailed study of performance aspects of storingagiges in the OIDX is presented in
the paper included in Appendix F.

7.1.5 Signature Caching

The signature could also be stored together with the objedisk. In this way, the additional update
cost is small. This is obviously of no use if the signatureisgarded from the buffer at the same time
as the object is discarded. However, it is possible to stweignatures of frequently accessed objects
in a signature cache Because the signature size is small compared to the obpegtreducing the
number of objects that fit in the object buffer and insteadigi$he memory for buffering signatures,
can improve the performance.

www.manaraa.com

72 CHAPTER 7. REDUCING THE DATA TRANSFER VOLUME

The signature cache approach is particularly interestimgpdge server ODBMSs using physical
OIDs, and in [156] we have shown that in such systems the gearhject access cost can be signifi-
cantly reduced by the use of a signature cache. Signatuhéngacan also be used in order to reduce
the communication costs in a parallel ODBMS [154].

7.2 Object Compression

To reduce storage space, as well as the amount of disk batduséd, objects can be compressed
before they are written to disk. Compression/decompressim be transparent to applications, which
means that compressed objects are decompressed by thelsfore they are made available to the
applications. In many application areas, for example SSkBs typical to have objects (or tuples)
with a very large number of attributes, of which many of theswdnnull values. By compressing these
objects, it is possible to reduce both storage space andameteddisk bandwidth. Another example
application is text, which can usually be compressed dovwes®than 50% of the uncompressed size.

The idea of compression in databases is not new, and someexistk, especially in the context
of SSDBs. A more general study and overview of support for m@ssion of data in databases has
been given by lyer and Wilhite [98]. They also analyze ddfardesign options with different data
sets.

In traditional systems, compression has been difficult tpleynefficiently. The reason for this is
that the effective compression ratio changes with the casitef the object, so that different versions
of an object can have very different sizes after compressimit is impossible to know the size of
future versions of a compressed object, it is necessarysgrve as much space as the maximum size
of a compressed object when updating in-place. When usiog-arily approach, an object is written
to a new location every time. In this way, a version only ngedsccupy as much space as the size of
the compressed version.

Better compression can be achieved if knowledge of thetstreiof the objects is available. One
example of how easy this can done, is the use of a bit mask @r eject, with one bit for every
attribute of the object. A bit is set to zero if the attribugeniull, if not, it is set to one. In this way,
attributes with a null value need not to be stored at all. Aardrof this technique, a descriptor con-
taining the offset of the start of each non-null field, wasdiiseSystem R [5] and POSTGRES [199].

Even without knowledge of the object structure, good restdin be achieved. In this case, objects
are simply treated as bit streams. To avoid using too much &Btlurces, a low cost compression
algorithm should be used, for example run-length encoding.

The fact that compressed data have to be decompressed bséateimplies that queries access-
ing large amounts of data only to check for a match in one orenattributes can be costly. Without
compression, such queries are usually /O bound, but cantessome CPU bound if data is com-
pressed. By combining signatures and compression, thidgrocan be reduced. When signatures
are maintained, perfect-match queries on attributes gelaets of objects can be done efficiently even
without decompressing the objects.

7.3 Summary

In this chapter we have described the use of signatures aadcdanpression. In the past, these
techniques have only had limited success in DBMSs. Howavergxpect that they can be more
beneficial in a log-only system than in an system based oheitepupdating, and in particular, when
used together in such a system.

www.manaraa.com

Chapter 8

Object-Identifier Indexing

In an ODBMS, an object is uniquely identified by an object idfaar (OID), which is also used as a
“key” when retrieving the object. As discussed in Sectioh, ®IDs can be physical or logical. In
a log-only ODBMS, objects are never written back to the salaegy This means that logical OIDs
have to be used, and an OID index (OIDX) is necessary. The auwofhobjects in a database can
be very large, and a fast and efficient index structure is ssang to avoid OID indexing becoming a
serious bottleneck. This chapter describes an objecixisttecture suitable for indexing OIDs in a
temporal ODBMS, and provides algorithms for efficient asdesthe index.

8.1 Contents and Structure of the OID Index

The OIDX contains the necessary information to map from ackigOID to the physical location
where the object is stored. The physical location, togaeitigrthe timestamp and other administrative
information, are stored in index entries which we aaiject descriptorgODs). A new OD will be
created for each new version of an object, so that for eaakcglthere can be more than one OD in
the OIDX, corresponding to the number of versions of the abje

In general, an ODBMS can manage multiple logical databa3dé® logical databases can be
represented as one or sevgrhlysicaldatabases. In Vagabond, we use one physical database ffior eac
logical database, and each logical database has a sepalate i

An OID is only unique inside one database, thus, object iflers in different databases will
represent different objects. All database sessions aferpegd against a certain database, which
database to access is given implicitly, and it is not necggeacontain database identifying informa-
tion in the OID.

As discussed in Section 3.1.2, the OIDX in a traditional sysis usually realized as a hash file or
as a multi-way tree structure. In a log-only system, a tragsire is the only reasonable alternative,
since an index node will be rewritten to a new location evanetit is updated. If a hash file was
used, an additional tree index on top of it would be neces¥seywould then effectively end up with
a tree structure anyway. The same is the case if we wantecetthasdirect mapping technique. For
this reason, all index structures considered in this cliagrgevariants of multi-way trees.

We will in the rest of this section describe the structure andtents of the OIDs and ODs in
Vagabond.

www.manaraa.com

74 CHAPTER 8. OBJECT-IDENTIFIER INDEXING

. . o000 .
Container Container Container

0 1 n

Figure 8.1: OIDX with containers.

8.1.1 Object Identifiers in Vagabond

In Vagabond, an OID is composed of three parts:

1. SGID: Server group identifier. Th8GID s the identifier of the server group (see Section 6.4)
where the object was created.

2. CONTID: Container identifier. ThR€ ONTIDidentifies the container the object belongs to (see
below), similar to a file in other DBMSs.

3. USN:Unique serial number. Each object created on a particutaes8GIDand to be included
in containerCONTID gets aUSNwhich is one larger than the previoukSNallocated in this
container.

The reasons for including 8GIDand anUSNin the OID should be obvious, but the rationale behind
the CONTIDneeds some further elaboration.

In many page server ODBMSs, the objects are stored in camaialso called files, or relations
(for example Objectivity, see Section 3.1). Which contaitteput an object in, is decided when
the object is created, and this decision is often made aic@ptd some clustering strategy (see Sec-
tion 3.3). In a traditional ODBMS, a part of the OID is ofteredgto identify in which container the
object is stored (see Section 3.1).

To benefit from the log-only approach, objects can not beedton distinct files or clustered
together in the same way as is beneficial in a system usindatepipdates. This would make it
difficult to achieve long, sequential writes. However, aprapach similar to physical clustering of
objects can be used for the OD in the OIDX. Similar to the wajeabclustering in page servers
reduces the number of pages to read and update, clustegethts ODs that are expected to be
accessed together close in time, will reduce the cost of Cdbeésses. This is achieved by associating
every object in a database with a container (see Figure Wh)ch container an object belongs to, is
encoded into its OID.

Note that the storage of objects is independent of whichaioets they belong to (for example,
there is no relation between a segment and a container) stheficontainers is only a way to cluster
related ODs.

An object can be migrated from one container to another.i¢fithdone, forwarding information
is stored inside the OD representing the current versioménariginal container. When a migrated
object is to be retrieved, two OIDX lookups are needed in otdeetrieve the OD: one lookup in the
original container, and one lookup in the container the digerrently belongs to.

www.manaraa.com

8.1. CONTENTS AND STRUCTURE OF THE OID INDEX 75

\ Field \ Size (bits) \

OID:
SGID 32 (Only present when outside OIDX nodes)
CONTID 32 (Only present when outside OIDX nodes)
USN 64

Physical location 64

Object size 32

Create timestamp 64

End timestamp 64 (Only present when outside the OIDX)

Class identifier (CID) 24

Delta object? 1

Large object? 1

Temporal object? 1

Compressed object? 1

Inlined object? 1

First version? 1

Migrated to another server group?L

Migrated to another container? | 1

(Signature) Optional field, variable size

Table 8.1: Contents and size of fields in the object desaripto

In addition to using the containers as a way to cluster the 6fbjects that are expected to be
accessed together, but in other ways are unrelated (ifkieradit classes), they are also useful as a way
to realize logical collections of objects from the same glésr example sets/relations, bags and class
extents! For example, one collection can be stored in one containdrenithis is done, scans and
queries against these collections can then be executeteetfifyfc When using signatures as well, it
will for many queries only be necessary to read a small pitopoof the objects.

Another interesting use of containers is to have more flé®ibn deciding the length of the search
path for ODs. This can be achieved by storing hot-spot abjecsmall containers (i.e., containers
with only a few objects) to get shorter search and updatespath

8.1.2 Object Descriptor Structure

The contents of an OD are summarized in Table 8.1, togethidr thve size of the individual fields
(Fields occupying one bit are used for boolean values).

The ODs are stored both in the OIDX and together with the abjecthe segments. The reason
for storing them in the segments as well, is to help idemjyobjects during cleaning, and it also
works as a kind of write-ahead logging of ODs, in order to dv®ynchronous updates of the OIDX
at commit time.

The information in the OD gives a high degree of flexibilitydagfficiency, and even though it
contains many fields, most of them can be stored in a compagtmany of them occupying only
one bit. As will be described later in this chapter, 8&ID and theCONTID are given implicitly

A class extent is a collection of all the objects of a certéd@ss in a database.

www.manaraa.com

76 CHAPTER 8. OBJECT-IDENTIFIER INDEXING

when stored in the OIDX, so they need not to be stored. In mddithe USNs of the ODs stored in
one index node will be from a limited integer range, so thafigrcompression can be used. When
in main memory, and outside an index node, @@NTIDmust also be included in the OD. ODs for
objects from other server groups are treated as a specia) saghat the&sGIDis only used for the
“remote” ODs. We will now describe in detail the contents &matction of these fields.

Physical Location

This is the location of the object in the log. If the object ikme object, this location is actually the
location of the root of the subobject index of the object (Seetion 8.5.2). If the physical location is
NULL, but the OD contains a valid timestamp, this OD is a totabs OD (the object is deleted, but
previous versions exist).

If an object is moved, for example during cleaning, the ptaislocation in its OD has to be
updated.

Object Size

All objects smaller than a certain threshold are written r@s contiguous object, while objects larger
than this threshold are segmented into subobjects, ang& tdnject index is maintained for each of
these large objects. Tlodbject sizdield in the OD is the size of a small object when in the log.

If the object is compressed, the actual size can be largeslijeet size In the case of fixed-size
objects, the size of the uncompressed object can be foundtfre class-descriptor object. If it is a
variable-sized object, the size is stored together withcrapression information in the compressed
version of the object.

In the case of large objects, the object-size field is not ($etcessary, the object size can be
found from the subobject index). Note that the fact that @#lybits is used to store the object size
only restricts the maximum size of a “small object”, larggeaibs can be larger than this.

Create Timestamp

This is the commit time of the transaction that created tleision. Each transaction needs distinct
timestamps, so a very fine timestamp granularity has to k& #s64 bit timestamp is more than what
is actually needed, but a 32 bit timestamp is not sufficiemd, @sing a size between 32 and 64 bits is
not efficient.

Timestamps with the most significant bit set are reservethiscase when a transaction identifier
is used instead of the timestamp in the OD. This will be furthelained in Chapter 12.

End Timestamp

The end timestamp is the time when the next version was deatethe time of deletion in case
there are no new subsequent versions. The create and erafaimps give the interval an object was
valid. If the OD is the OD of the current version of an objebi £nd timestamp is NOW, which is
represented by the value NULL.

When in the OIDX, the end timestamp is given implicitly frohetcreate timestamp in the OD
of the next version of the object. This OD will in most caseside on the same index node, so it
is not necessary to store it here. However, when the OD isdeutee OIDX? the end timestamp is

2This also includes the PCache, to be presented in Chaptéreédewthe ODs also include the end timestamp.

www.manaraa.com

8.1. CONTENTS AND STRUCTURE OF THE OID INDEX 77

included. This makes certain operations and buffering os@iore efficient (see Section 12.2.5).

Delta Object

Delta object is set to true if this is a delta object (see $adi.3.5).

Large Object

This is true if this version of the object is a large object. dject can be a “plain data object” as well
as a special objects (for example an index, as describedcitio865.2). If it is a special object, the
relevant information is stored in the object’s class degori (CDO).

Temporal Object

Temporal object is set to true if this is an object where wetvaikeep old versions when the object
is modified or deleted. This is decided for each object atatljesation time, but can be changed
later (although this is not always a good idea, for exampiis, must be done with care with respect
to cleaning).

It should be noted that this information could also be stamneitie class-descriptor object. In that
case, all objects in a class are either temporal or not. Wapgroach to use depends on whether
orthogonality with respect to temporality is desired or.not

Compressed Object

In many cases, it is worth using some extra CPU cycles to tredoce the size of an object before
storing it in the log (see Section 7.2). An object is only estbcompressed if it is beneficial, and in
this case, compressed object is set to true.

This field is not used for large objects, where subobjectsiratependently compressed. The
compression information is stored in separate subobjestriggors, which will be described in Sec-
tion 8.5.2.

Class ldentifier

In Vagabond, information about a class is stored in a classrifgor object (CDO) (see Section 6.2.1).
The class identifier (CID) in an OD is actually the OID of the GDf the class that the object belongs
to.

It is important to note that the class identifier is a tempralperty of an object, it can change
during the lifetime of the object. With class migration, djext can belong to different object classes
at different points in time.

The number of classes, and as a consequence, the number &f G2Ssumed to be much smaller
than the number of objects, so we can manage with a smalkeosihe CID than the size of the OID.
The class, and the description of it, is global for a datapssdhere is no need to uses&ID. The
CONTIDis also given implicit, we assume the ODs of the CDOs are dtor@ separate container.
The size of the class identifier is 24 bits, enough to repteseer 16 million object classes in one
database.

www.manaraa.com

78 CHAPTER 8. OBJECT-IDENTIFIER INDEXING

Signature

This optional field contains the object’s signature (sediGe&.1.4). The signature field can have
variable-length size, if present. Information on signataraintenance and signature size is stored in
the CDO.

Inlined Object

In total, 12 bytes in the OD are used to store the physicatitmeand size of an object. If the size of
the object is less than 12 bytes, it is better to store it in@ieinstead, in the physical location and
object size fields. We call this dnlined object Up to 11 bytes is used for the object, while the last
byte is used to store the length of the inlined object.

Even though it is also possible to use the signature fieldhisrgurpose, that would complicate
signature access queries, because the signature woulddhlagereated on the fly every time.

First Version

This bit is set in the OD of the first version of an object. In sotamporal operations, this can be
utilized to avoid index accesses when we have this OD in maimany.

Migrated to Another Server Group

An object can migrate from the server group where it was ekt another server group. In this case,
themigrated to another server group set to true, and the server identifier of the new serveoiedt

in the physical location field. If the object is migrated aa®t time, only the OD on the server on
which it was created will be updated. In this way, only ondrection is needed. By caching remote
ODs on a server, this will only infrequently require netwarffic.

Migrated to Another Container

Similar to migration to another server, an object can be ategt to another container. The new

container identifier is stored in the physical location fidlithe case the object is migrated a second
time, only the OD for the first container will be updated (altigh it can be wise to update both, to

avoid problems with ongoing updates). In this way, only ardirection is needed, similar to the case

of server group migration.

8.2 Declustering

One database can be distributed over several server greapsSection 6.4). In this case, we use
one OIDX for each server, and this OIDX indexes the objeatsest on this server. In the case of
a multi-server system, the OID, which contains the serveugridentifier, is used to identify which
server group to access in order to retrieve an object.

In the case of a server group (see Section 6.4), where datcigstered over the servers in the
group, the declustering strategy (for example hashing @<plis used to determine which server in
the server group stores that object. In this way, the OIDXniplicitly partitioned.

Figure 8.2 illustrates a distributed system with serverugs In this configuration, we have 4
server groups, and each server group consists of 8 serversn tBough all server groups in this
configuration contain the same number of servers, this neethenthe case in general. Objects in

www.manaraa.com

8.3. TEMPORAL OID INDEXING 79

Server Group 0 Server Group 1

| ServerOl | Serverll | ServerOl | Serverll

| Server 5 | | Server 4 | | Server 5 | | Server 4 |

Server Group 2 I::Z<§| Server Group 3

| ServerOl | Serverll | ServerOl | Serverll

| Server5| | Server4| | Server5| | Server4|

Figure 8.2: Distributed system, with server groups andeystv

one server group are declustered over the servers accamalithg hash value of their unique serial
numbers. If we want to access an object with an OID whetd D = 2, CONTID = 425, and
USN = 84623, the server group to access is server group 2, and the aetwalr sn the server group
is 84623 MOD 8 = 7. We emphasize that the OIDX of this seomy indexes the objects that have
been created in this server group, i8GID= 2, andhaveUSNMOD 8 equal to 7.

When indexing ODs of temporal objects, it is possible thatdimple hashing strategy used in this
example is not sufficient, and that other declustering saseran be useful. This will be discussed in
Section 11.

8.3 Temporal OID Indexing

In Vagabond, we use one OD for each version of an object (twe fobmigrated objects). The OIDX
has to support access to ODs of current as well as historaalons of the objects, and we consider
the following requirements as very important for a temp@=#&DX in Vagabond:

e Support for temporal data, while still having index perfemae close to a non-temporal (one-
version) DBMS for non-temporal data. Even if the use of otkieds of indexes could give
better support for temporal operations, we believe efficrem-temporal operations to be cru-
cial, as they will still be the most frequent operations.

e Efficient object-relational operations. This is expectet¢ achieved by the use of containers.

e Easy migration of partitions of the index to tertiary stagag

Before we present our temporal OIDX, we take a closer lookoates characteristics of OIDs
and OID search, and analyze the following four alternative®ID indexing in atransaction-time
temporal ODBMS:

1. One index, which indexes ODs of current as well as histbsiersions of the objects.

www.manaraa.com

80 CHAPTER 8. OBJECT-IDENTIFIER INDEXING

2. One index for ODs of current versions, with links to the Gid&istorical versions.
3. Nested-tree index, which is one index witgrsion subindexes

4. Two separate indexes, one for ODs of current versionspaedor ODs of historical versions.

8.3.1 Characteristics of OIDs and OID Search

When considering appropriate index structures and opersitin these indexes, it is important to keep
in mind the properties of an OID:

e The keys in the index, the OIDs, are not uniformly distrilsligerer a domain as keys commonly
are assumed to be. If we assume the unique part of an OID to bd#eger, new OIDs are
in general assigned monotonically increasing values éaidontainer. In this case, there will
never be inserts of new key (OID) values between existing K&IDs) in the container. In
addition, OIDs will be clustered, in one cluster for eachtearer.

¢ If an object is deleted, the OID will never be reused.

In a tree-based non-temporal OIDX, new entries will be adggaend-only. By combining the knowl-
edge of the OIDX properties and using tuned splitting, whigh be described in Section 8.4.1, an
index space utilization close to 1.0 can be achieved. Ifainet clustering is used, however, inserts in
between entries occur, and space utilization will decred$gs can be avoided by using a hierarchy
of multi-way tree indexes, as will be shown later.

Without container clustering, index accesses will mos#yftr perfect match, there will be no
key-range search (in this case a range of OIDs). With coetailustering, there will be two search
classes: search for perfect match during object-navigagueeries, and search for all entries in one
container in the case of a container scan. Accessing obeatsontainer will often result in additional
navigational accesses to referenced objects. It is impbrtaremember that there will in general be
no correlation between OID and an object-key attribute éfirted), so that an ordinary object key-
range search will not imply an OID-range search in the OllfXalue-based range searches on keys
(or other attributes in objects) are frequent, additioredamdary indexes should be employed, for
example B -trees or temporal secondary indexes. In this case, the @B time in the case of
temporal queries) resulted from the key search will be soated then used to access the objects by
lookups in the OIDX.

In a temporal ODBMS, the existence of object versions irsgeahe complexity. For example,
we need to be able to efficiently retrieve ODs of historicalval as current versions of objects, and
support time-range search, i.e., retrieve all ODs for disjgalid in a certain time interval. To do this,
we need a more complex index structure than what is suffiéterg non-temporal ODBMS.

8.3.2 One Index Structure

If only one index is used, we have the choice of using a congasilex, which is an extension of the
tree-based indexes used in non-temporal ODBMSs, and usm@fahe general multiversion access
methods.

www.manaraa.com

8.3. TEMPORAL OID INDEXING 81

0:9
T:13
0:5 0:9 0:820
T:143 | T: 13 LA T: 1234
0:1 0:2 0:5 0:5 0:5 0:5 0:9 = = u| 0:834 | O: 956
T:1 T:3 T:7 T: 143 T:435| T:1467 T:13 T: 1454 T: 1534

Figure 8.3: One-index structure using the concatenatio@IBfand commit timeQID||TIME, as
the index key.

Composite Index

With this alternative, we use the concatenation of OID anmuroit time O D||TIM E as the index
key, as illustrated in Figure 8.3. By doing this, the ODs df tlifferent versions of an object will
be clustered together in the leaf nodes, sorted on commgt. tilks a result, search for the OD of the
current version of a particular object as well as retrievaD®s for objects created during a particular
time interval can be done efficiently.

This is also a useful solution if versioning is used for nugtsion concurrency control as well.
In that case, both current amelcentobjects will be frequently accessed. It is also possiblé rieny
of the future applications of temporal DBMS will access mof¢he historical data than has been the
case until today, something that might make this altereatiseful in the future. However, there are
two serious drawbacks with this alternative:

1. Evenin anindex organized in containers, leaf nodes wiitain a mix of current and historical
ODs. The ODs of current versions are not clustered togesbenething that makes a scan over
the ODs of current versions inefficient.

2. An OIDX is space consuming, a size in the order of 20% of the ef the database itself is
not unexpected [62]. In the case of migration of old versiohsbjects to tertiary storage, it
is desirable, and in practice necessary, that parts of tlEXGtself can be migrated as well to
avoid the need for large amounts of disk space for the OIDXhefrhigrated objects. This is
difficult when current and historical versions reside onghme leaf pages.

Temporal OID Indexing in POST/C++. One temporal ODBMS using a composite OIDX is the
POST/C++temporal object store [202], which is based on éx@3 object store [189]. In POST/C++,
objects are indexed with physical OIDs, and a variant of thramosite-index structure is used to index
historical versions. Because of the use of physical OID®vaobject is created to hold the previous
version when an object is updated. After the previous varkis been copied into the new object, the
new version is stored where the previous object had preljioasided. A positive side effect of doing
it this way, is that current and historical objects are sefeaf, and that clustering does not deteriorate.

To be able to access the historical versions, a separaigdg-based history index is used. This
index uses the OID of the current-version object, concageheith time, as the index key. The leaf
node entry is the OID of the current version of the object, tithee interval where this version was
valid, and the OID of the historical version. The locatiortleg historical version is given through the
OID in the leaf node.

www.manaraa.com

82 CHAPTER 8. OBJECT-IDENTIFIER INDEXING

In a database using physical OIDs, this hybrid index stracisi not a bad choice. By doing it
this way, current versions will still be clustered togethend having the historical index separated
from the current index (in this case no index), makes it easienigrate historical objects to tertiary
storage. The temporal index, on the other hand, can noydasiinigrated.

Use of General Multiversion Access Methods

Using one of the general spatial, multidimensional, or imeitsion access methods is also an alter-
native. However, considering the indexing problem sim@patial/multidimensional indexing with
the two dimensions OID and time will not be efficient. An oltjeersion is not only valid at a certain
time (a point in the multidimensional space), but in a certane interval (until the next version is
created). In addition, a lookup for the current version ofofect can be difficult with these index
approaches, because time is a constantly expanding diomeddultiversion access methods are more
suitable, but the existing methods have drawbacks. We wilt ltonsider three of the most interest-
ing methods: the TSB-tree [132]R-tree [84], and LHAM [143} TSB-trees and R-trees both have
efficient support for time-key range search, while LHAM hageay low update cost. However, each
of these access methods has drawbacks:

e LHAM is of limited use for OID indexing, because it can haveighhlookup cost when the
current version is to be searched for. As this will be a veegérently used operation, LHAM is
not suitable for our purpose. In addition, which access ogktb use in the index components
is still an issue.

e When indexing ODs, most queries will be OID lookups, and ia ttase support for key-range
search is of little use.

e R-trees are best suited for indexing data that exhibits & Higgree of natural clustering in
multiple dimensions [178]. This is not the case when indgX@Ds, and one of the results is a
high degree of overlap in the search regions of the non-ledés. Although @egment R-tree
can reduce this problem, it will have a higher insert cos8]1The fact that we do not know
the end-time of a new OD further complicates the use of areR-tr

e Using a TSB-tree or segment R-tree increases the storage bpaause some entries are resi-
dent in more than one node.

¢ In the TSB-tree, heuristics have to be used to determine whsplit by time and when to split
by key, and in R-trees, heuristics have to be used to deterbononding rectangles. This makes
the performance vulnerable to changing access patterns.

TSB-trees and R-trees have both good support for time-kgyeraearch, and make index partitioning
possible. However, when indexing ODs, most queries will BB @okups, and when OID is the
key, support for key-range search is of little use. Even & tise of TSB- or R-trees could give
better support for temporal operations, we believe efficiem-temporal operations to be crucial, as
they will probably still be the most frequently used opevai. These multiversion access methods
will increase storage space and insert cost considerabty tlds contradicts our important goal of
supporting temporal data, while still having index perfame close to a non-temporal ODB. As

%There are also other B-tree-based temporal indexes, imgutie Write-Once B-tree, the Persistent B-tree and the
Multiversion B-tree, but they do not support migration aftiorical data [178].
4See description in Section 5.4.3.

www.manaraa.com

