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Abstract

Storage costs are rapidly decreasing, making it feasible tostore larger amounts of data in databases.
However, the increase in disk performance is much lower thanthe increase in memory and CPU
performance, and we have an increasing secondary storage access bottleneck. Even though this is not
a new situation, the advent of very large main memory has madenew storage approaches possible.

In most current database systems, data is updated in-place.To support recovery and increase
performance, write-ahead logging is used. This logging defers the in-place updates. However, sooner
or later, the updates have to be applied to the database. Thisoften results in non-sequential writing of
lots of pages, creating a write bottleneck. To avoid this, another approach is to eliminate the database
completely, and use alog-only approach, similar to the approach used inlog structured file systems.
The log is written contiguously to the disk, in a no-overwrite way, in large blocks.

This thesis presents the architecture and design of Vagabond, a temporal object database man-
agement system (ODBMS) based on the log-only principle. Solutions to problems regarding tem-
poral data management, fast recovery, efficient managementof large objects, dynamic reclustering,
and dynamic tuning of system parameters are provided. This includes a new index structure for in-
dexing temporal objects, persistent caching of index entries to solve the object indexing bottleneck,
algorithms for transaction management, and declustering strategies to be used in a parallel temporal
ODBMS.

In order to compare the log-only approach with the traditional in-place update approach, analytical
cost models are used to study the performance of the approaches. The analysis shows that with the
workloads we expect to be typical for future ODBMSs, the log-only approach is highly competitive
with the traditional in-place update approach.

Many of the ideas presented in this thesis are also useful outside the log-only context. In pa-
pers included as appendixes, we show how the ideas can be applied to temporal ODBMSs based on
traditional in-place updating techniques.
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Chapter 1

Introduction

The recent years have brought computers into almost every office, and this availability of powerful
computers, connected in global networks, has made it possible to utilize powerful data management
systems in new application areas. The increasing performance and storage capacity, combined with
a decreasing price, have made it possible to realize applications that were previously too heavy for
medium- and low-cost computers. However, high performanceand storage capacity is not enough. We
need support software, including database management systems, operating systems, and compilers,
that are able to benefit from the advances in hardware. This often means rethinking previous solutions,
similar to what was done in the hardware world with the introduction of the RISC concept.

In this thesis, we concentrate on database management systems (DBMS), quite likely to be the
bottleneck in many future systems. The first step in the process of rethinking old solutions has already
been done, with the advent of object database management system (ODBMS).1 While relational data-
base management systems (RDBMSs) have good performance formany of the traditional application
areas, new applications demand more than traditional RDBMSs can deliver. The increased modeling
power and removal of the language impedance mismatch in ODBMSs, have made integration between
application programs easier, and in many cases helped to increase the performance of the applications.

Traditionally, data (objects/tuples) have lived in an artificial, modeled world, after being inserted
into the database. This creates a mismatch in many ways similar to the language impedance mismatch
in RDBMSs. What we would like, is DBMSs supporting a world more similar to our own, which in-
cludestime and space. This is not at all a new observation, especially the aspect of temporal database
management has been an active research area for many years. However, current database architec-
tures, which are adequate for yesterday’s applications, might have problems coping with tomorrow’s
application. In this thesis, we will reconsider some of whatis “established truth”, and propose a new
architecture, theVagabond Temporal Object Database Management System, which should be more
suitable for tomorrows applications.

Before we finish this section, it is very important to emphasize that some of the ideas in this
thesis are not new. However, many of the ideas did not have a supporting framework when they were
proposed. Hence, many of the ideas are now forgotten. One notable exception, is some of the ideas
from the POSTGRES system. POSTGRES included many novel ideas, which, because they where
incorporated into a system, managed to survive. Unfortunately, POSTGRES was in many ways too
early, and even though many of the elements of POSTGRES survived into current object-relational
systems, some of the ideas we will concentrate on in this thesis, like the no-overwrite strategy, and

1The termobject-oriented database management system(OODBMS) was previously used, but now the more precise
termobject database management system (ODBMS)has gained acceptance.
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keeping previous versions, have later had little attentionin DBMS research.
In the rest of this chapter, we will motivate the work that will be presented in the rest of this

thesis. In Section 1.1 we describe some application areas that have only limited support in existing
database system. Based on this discussion, we summarize some of the problems and shortcomings of
current systems in Section 1.2, and outline assumptions andfeatures that motivated the design of the
Vagabond system, which will be described in detail throughout the rest of the thesis. In Section 1.3,
we outline the structure of the rest of the thesis.

1.1 Application Areas

We can categorize application areas intoexistingapplication areas, andemergingapplication areas.
Existing application areas include the traditional database areas, for example transaction processing
applications, well suited for RDBMSs. They also include application areas where application specific
DBMSs or file systems have been used earlier, because existing general purpose DBMSs can not
handle the performance constraints. Emerging applicationareas includes both new application areas,
that are emerging as a response to the increased computer performance in general, and application
areas that are a response to other technologies, for examplethe World Wide Web.

We will in this section first describe some examples of existing applications where DBMSs until
recently have been a potential performance bottleneck:� Geographical information systems.� Scientific and statistical databases.� Multimedia systems.� PACS (picture archiving and communications systems).

Next, we will describe some applications where increased database support will be needed in order to
deliver the desired performance:� Temporal DBMSs.� Semistructured data management/XML.

Geographical Information Systems. A geographical information system (GIS) is a system for
management of geographical data, i.e.,data which describes phenomena directly or indirectly as-
sociated with a location (and possibly time and orientationas well) relative to the surface of the
Earth [34].

Earlier, GIS employed the DBMS (usually a RDBMS) to manage the fact data2 only, but used pro-
prietary file management systems to take care of geometricaland topological data. The main reason
for this, was that most RDBMSs did not support sequences (“ordered sets”), and retrieving polygons
from relations was (and still is) prohibitively expensive.This is unfortunate, because the file man-
agement systems tend to be single-user, and there are no transactional access control as in DBMSs.
Recently, GIS have been built by extending database systemswith spatial data types. However, these
ad-hoc solutions do not really address the main problem, thedata model: concepts are simple, the data

2Fact data is data describing the objects, e.g., the name of a road, but not the “road object” itself.
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type system is weak, data have to be normalized in first normalforms while hierarchical structures
are needed, semantic links are lost and need to be rebuilt through semantic constraints, and the data
access system is very expensive because of joins [51].

With its increased modeling power, ODBMSs are ideal for GIS applications. They support com-
plex objects and relationships efficiently. However, some ODBMSs do not have sufficient support for
large objects, and not all ODBMSs have a scalable architecture.

Scientific and Statistical Databases. Scientific and statistical databases (SSDBs), for example sur-
vey data and data from physical experiments, have many characteristics in common, which makes it
practical to consider them together:� The size of the databases are usuallyvery large.� The update frequency is oftenvery low. The reason for this, is that the primary purpose of an

SSDB is to collect data for future reference and analysis.� Bulk loading is frequently used to insert data into the database.� The read/write ratio can be low. Because of the size of the database, summary data is often used
instead of the whole database in queries.� Data in both scientific and in statistical databases are eventually statistically analyzed.� Complex relationships exist between data. For example, experiments not only carry result data,
but also configuration and environmental data.� Multidimensional data is frequent.� Data is often sparse, i.e., many attributes have a NULL value.

The size of SSDBs pose a problem for many DBMSs, and the complex relationships make a data
model with high modeling power desirable. Traditional systems do not support multidimensional data
well, and in the case of sparse data, efficient support for compression is necessary. This does not only
include support for compression and decompression itself,but also efficient access and manipulation
of compressed data.

In analysis, statistical operators are needed. These are not included in traditional systems. Another
important feature in practical SSDBs, is bulk loading, which few systems handle well.

Database research and development is highly market driven,and until very recently, the active
research in this area was very limited. This has changed dramatically the last few years, with the
increased interest in data warehousing/OLAP, which has many similarities with SSDBs.

Multimedia Systems. Multimedia data management differs from traditional data management in
several ways:� Large objects, for example images and videos, are common. Ingeneral, there are sufficiently

many large objects stored in such a database to make the totaldatabase size large as well.� New and complex data types.� New types of queries. One example is query by contents, another is queries on image charac-
teristics (for example on image histograms).
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of the object at regular time intervals, and not the whole object at once. The scheduling of this
data delivery is complicated, as is witnessed from dedicated video servers, which do not have
to care about the other database aspects.

Even though some vendors define all databases capable of storing large objects as multimedia DBMS,
the fact is that current DBMSs have only limited support for multimedia data, and this is particularly
true for isochronous delivery of the data stored in the database.

Picture Archiving and Communications Systems. Picture archiving and communications systems
(PACS) will be an important part of tomorrow’s health care. In the future different kinds of data will
be stored in such systems, but currently most systems concentrate on storage of pictures, for example
X-ray pictures. The pictures stored in these systems are required to have a high resolution, and with
the number of pictures to be stored in such a system the database size will be very large. The historical
data in a PACS system will be very infrequently accessed, andcan be stored in tertiary storage.

Temporal Database Management Systems.A temporal DBMS is a DBMS that supports some
aspects of time. Informally, this means that an object (or a tuple) is associated with time, and that the
object can exist in several versions, each version being valid in a certain time interval. An example is
the salary of a person. If the salary is represented as a temporal object, a new object version is created
every time the salary is changed. In a temporal DBMS, this versioning, related to time, is supported
and maintained by the system, which also provides support for querying the temporal data.

The temporal aspect exists in most real life databases, where some or all of the data is associated
with some aspect of time. Examples include:� Accounting: What bills were sent out and when, and what payments were received and when.� GIS: The geography, such as rivers, and the existence, shapeand size of objects such as houses

and roads, change over time.� Stock marked data.� Patient records.� Personnel information, including salary histories.� Airline reservation systems.� In scientific DBMSs, timestamping of data is important, for example for data from an experi-
ment that is repeated several times.

We will give a more detailed introduction to temporal DBMSs in Chapter 4.

Semistructured Data Management/XML. A very active research area at the moment, issemistruc-
tured data management.Semistructured data is data where the information that is normally associated
with a schema, is containedwithin the data. In some forms of semistructured data there are no separate
schemas, in others it exists, but only places loose constraints of the data [35].

The main reasons for the heavy interest in semistructured data are its application in data ex-
change/data integration, and the large amount of semistructured data available on the Web. Research
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in semistructured data management has recently been concentrated on the theory of semistructured
data; models, query languages, but less on physical management. Several approaches have been
taken in incorporating the ideas on top of traditional ODBMSs, for example on O2 [2], but only a
few systems have been specially designed for semistructured data. One example of such a system is
Lore [138].

ODBMSs are very appropriate for semistructured data management, as their underlying model
has many similarities with most semistructured data models, for example the Object Exchange Model
(OEM) [3]. However, some features not provided by most existing ODBMSs are desired. One ex-
ample is query languages suitable for semistructured data,and appropriate optimization techniques.
If these DBMSs should deliver reasonable performance, new indexing techniques are also needed,
including full text indexes.

As pointed out by Abiteboul [1], we are often more concerned by querying the recent changes in
some data source than in examining the entire source. Support for temporal data in the storage layer
would facilitate this, and this can also be useful in distributed DBMSs where data is exchanged in
bulk at regular intervals.

1.2 The Need for a New Architecture

Based on the discussion in the previous section, we have identified some features that should be
supported by future database systems:� Temporal data and operations on these.� Large objects and flexible partitioning of large objects.� Isochronous delivery of data.� Queries on large data sets.� In applications with low read/write ratio, it should be possible to use this characteristic to in-

crease performance.� Full text indexing.� Multidimensional data.� Efficient storage of sparse data (for example by the use of data compression).� Dynamic clustering and dynamic tuning of system parameters.

Until now, no single existing system has supported all thesefeatures. Ad-hoc solutions exist for
some of the features, but these are often not scalable, or will not work well together with support for
the other features. We believe that future systems should efficiently support these features, inone
integrated system. In this thesis, we show how this can be done, through the design of the temporal
ODBMS Vagabond.3 Vagabond is designed to support the listed features, with a philosophy based on
the following assumptions:

3FromWebster’s Encyclopedic Unabridged Dictionary: Vagabond: “a person, usually without a permanent home, who
wanders from place to place; nomad”. Quite similar to our objects!
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1. Although many of the current problems might be handled by future main-memory database
management systems (MMDBMSs), there are many problems (andmore will appear, as the
computers become powerful enough to solve them) that require the management of larger
amounts of data than can be handled by a MMDBMS alone. However, the increasing amounts
of main memory should be utilized as far as possible in order to reduce time consuming sec-
ondary storage accesses.

2. The main bottleneckin a DBMS for large databases is still secondary storage access. In a
DBMS, most accesses to data are read operations. Consequently, database systems have been
read-optimized. However, as main-memory capacity increases, we expect that the amount of
disk-write operations relative to disk-read operations will increase (most read operations can be
satisfied from the main-memory buffer). This calls for a focus onwrite-optimizedDBMSs.

3. To provide the necessary computing poweranddata bandwidth, a parallel architecture is nec-
essary. A shared-everything approach is not scalable, so our primary interest is in ODBMSs
based on shared-nothing multicomputers. With the advent ofhigh performance computers, and
high speed networks, we expect multicomputers based on commodity workstations/servers and
networks to be most cost effective.

4. In most application areas, there is a need for increased data bandwidth, and not only increased
transaction throughput (although these points are related). This is especially important for
emerging application areas such as multimedia and supercomputing applications, which have
earlier used file systems.

5. Even though set-based queries have been a neglected feature in most ODBMSs, we expect it
to be as important in the future for ODBMSs as it has been previously for RDBMSs. The
popularity of the hybrid object-relational systems justifies this assumption.

6. Distributed information systems are becoming increasingly common, and they should be sup-
ported in a way that facilitates both efficient support for distribution,andefficient execution of
local queries and operations.

1.3 Outline of the Thesis

The thesis is logically divided into four parts. The first part, Chapter 2 to 5, is mainly an introduction
to ODBMSs and ODBMS implementation issues, temporal DBMS, and the log-only approach.� Chapter 2describes the most important features of ODBMSs, gives an overview of the ODMG

standard, and outlines the history of ODBMSs.� Chapter 3discusses design issues in ODBMSs.� Chapter 4gives an introduction to temporal DBMSs in general.� Chapter 5gives an introduction to log-only DBMS, and a short overviewof previous systems
based on the log-only approach.

In the second part, the architecture of the Vagabond log-only DBMS and the most important algo-
rithms are described in detail.
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1.3. OUTLINE OF THE THESIS 9� Chapter 6describes the architecture of the Vagabond temporal ODBMS.� Chapter 7discusses two techniques for reducing the data transfer volume: signatures and object
compression.� Chapter 8studies the problems of indexing object identifiers (OIDs) in a temporal ODBMS,
and proposes a new indexing structure suitable for this task.� Chapter 9introduces a novel structure called thePersistent Cache, which reduces the OID
indexing cost.� Chapter 10gives a more detailed description of large objects and theiruse in Vagabond.� Chapter 11discusses object declustering in parallel and distributedtemporal ODBMSs.� Chapter 12describes the most important operations in Vagabond.� Chapter 13describes the most important physical data structures in Vagabond.

In the third part, log-only database systems are compared analytically with traditional in-place updat-
ing ODBMSs, and we conclude the thesis.� Chapter 14contains analytical models of a log-only ODBMS and an in-place update ODBMS,

and uses these models to compare the hypothetical performance of the two approaches.� Chapter 15contains a qualitative analysis of the declustering strategies discussed in Chapter 11.� Chapter 16concludes the thesis and outlines directions for further research.

The fourth part, Appendix A to F, is a compilation of papers that discuss issues not covered in detail
by the main part of the thesis. The four last papers show how the results of the main part of the thesis
are also applicable for temporal ODBMSs based on traditional techniques.� The paper “Aggregate and Grouping Functions in Object-Oriented Databases”, presented at

SCCC’96, is included in Appendix A.� The paper “Improved and Optimized Partitioning Techniquesin Database Query Processing”,
presented at BNCOD’97, is included in Appendix B.� The paper “An Analytical Study of Object Identifier Indexing”, presented at DEXA’98, is in-
cluded in Appendix C.� The paper “Optimizing OID Indexing Cost in Temporal Object-Oriented Database Systems”,
presented at FODO’98, is included in Appendix D.� The paper “The Persistent Cache: Improving OID Indexing in Temporal Object-Oriented Data-
base Systems”, presented at VLDB’99, is included in Appendix E.� The paper “Efficient Use of Signatures in Object-Oriented Database Systems”, presented at
ADBIS’99, is included in Appendix F.

In Appendix G we present a validation of the index buffer model used in the papers in Appendix C, D, E,
and F. In addition, a list of abbreviations used in this thesis is provided in Appendix H.
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Chapter 2

Object Database Management Systems

Relational database management systems (RDBMS) have revolutionized database management dur-
ing the last 20 years. Important reasons for the success are SQL, and the ability to efficiently perform
queries over large amounts of data. However, RDBMSs are based on a simple data model. Even
though this gives high performance for many typical data-retrieval applications, the result can often
be very low performance in applications managing data with complex relationships. For example,
until very recently it was impossible to design a GIS systemsbased on traditional RDBMS technol-
ogy.1 In addition, in many applications with high transactions rates, systems based on hierarchical
and network data models have continued to be used.

For some application areas, a more complex data model and focus on data manipulation, rather
than data retrieval, is desired. Typical examples of such systems have been GIS, CAD, software
development systems and more recently also Web databases. Many applications also need to do
complex operations on the data. In a typical RDBMS, this has to be done by accessing the database
from the application program by using database commands embedded in some general programming
language. Thislanguage impedance mismatchis costly and inefficient.

Object database management systems (ODBMS), previously called object-oriented database man-
agement systems, emerged as an answer to the shortcomings ofprevious models and systems. The
rest of this chapter will give an introduction to ODBMS, and we will start by defining the termobject
database management system (ODBMS)in the next section. An overview of the world of ODBMS
would not be complete without an overview of the contents of the ODMG standard, which is given
in Section 2.2. To set our work into perspective, we briefly outline the history of ODBMSs in Sec-
tion 2.3, from the first approaches in persistent programming languages, via storage managers, to
today’s commercially available ODBMSs. We also give a briefoverview of object-relational database
management systems (ORDBMS).

2.1 What is an Object Database System?

As is obvious from the ODBMS research prototypes and commercially available ODBMSs, the de-
sign space for an ODBMS is much larger than for RDBMSs. However, there are some features and
characteristics shared by most of them, initially described in The Object-Oriented Database System
Manifestoby Atkinson et al. [6]. We will now summarize the most important features, separated into
language related features (the OO part), and the database features (the DB part).

1A notable exception is Techra [204], which over a decade ago included support for GIS data management, including
sequences.
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Language features:� Complex objects. The ability to build complex objects from simpler ones by applying construc-
tors to them. Complex object constructors include tuples, sets, bags, lists, and arrays.� Object identity. All objects have a system managed identitythat is independent of the value of
the object. The identity is assigned by the system, can not bealtered by the user, and remains
the same even when the value of the object changes.� Encapsulation. Encapsulation is used to distinguish between the specification and the imple-
mentation of an operation. No operations, outside those specified in the interface, can be per-
formed. This restriction holds for both update and retrieval operations.� Types or classes. Types or classes should be supported. The ODMG standard encapsulates
both, and the language binding used decides to what extent these concepts are supported.� Class or type hierarchies. Inheritance is a powerful modeling tool, because it gives a concise
and precise description of the world, and it helps in factoring out shared specifications and
implementations in applications.� Overriding, overloading and late binding. This is the concept of having several implementations
of an operation, for each of the types. Which implementationto use, is decided at run-time,late
binding.� Computational completeness. To avoid the language impedance mismatch, the data manipula-
tion language should be computationally complete.� Persistence. Persistence is the ability of the programmer to have her/his data survive the exe-
cution of a process, in order to eventually reuse the data in another process. Persistence should
be orthogonal, i.e., each object, independent of its type, is allowed to become persistent as
such (i.e., without explicit translation). It should also be implicit: the user should not have to
explicitly move or copy data to make it persistent.

Database features:� Secondary storage management. Database mechanisms as index management, data clustering,
data buffering, access path selection and query optimization should be invisible to the user: they
are simply performance features. There should be a clear independence between the logical and
the physical level of the system.� Concurrency and recovery. The system should offer the same level of service as traditional
database systems, i.e., atomicity and controlled sharing when multiple users access and update
data. The same applies to recovery, in case of hardware or software failures, the system should
recover, i.e., bring itself back to a consistent state.� Ad-hoc query facility. The system should provide functionality of an ad-hoc query language,
though not necessarily as an own query language. This is probably the feature where current
ODBMSs differ most. While some systems, likeO2, offer a SQL like language (OQL), with
query optimization similar to RDBMSs, other systems only provide primitive scan operations.
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The Manifestoalso lists some additional features, the most important being support fordistribu-
tion, design transactions(“long” transactions) and versioning. These features are not mandatory
to make a database system an object-oriented system, but features that are desired in many of the
typical ODBMS applications. Thus, these features are supported to some extent in most commercial
ODBMSs.

2.2 The ODMG Standard

ODBMS is now a relative mature technology, and commercial ODBMSs have proved to be competi-
tive with RDBMSs in many application areas, and superior in others. They have been able to deliver
high performance and provide high availability. Still, they have not managed to seriously threaten the
traditional RDBMSs.

There are several reason why the ODBMS market segment is still small, but one important factor
has been lack of standardization. One important reason for the success of the RDBMSs, is the common
data model and the common data specification and manipulation language. This was realized by
the ODBMS vendors in the early 90’s, and theObject Database Management Group (ODMG)was
formed in 1991 to develop and promote standards for object storage. The participants of the ODMG
includes representatives from all major ODBMS vendors. Recently, the focus of the ODMG have
been broadened, and the name changed to theObject Data Management Group.

2.2.1 The Components of the ODMG Standard

The components of the ODMG standard [43] are built upon the ODMG object model, which is a
superset of the OMG object model. The specification covers three areas:� Object definition language (ODL).� Object query language (OQL).� Language bindings.

Object Definition Language. ODL is in fact a syntax of the object model, and is a superset of
OMG’s IDL. It can be used to define a database schema in a programming language independent
manner in terms of object type, attributes, relationships and operations. The resulting schema can be
moved from one database to another. The schema of an application can be translated to declarations
in different programming languages. These schemas can be included in the application code.

Object Query Language. OQL is a declarative query language, and is a superset of the part of
SQL that deals with database queries. It includes support for object sets and structures, and has object
extensions to support object identity, complex objects, path expressions, operation invocation, and
inheritance.

Language Bindings. ODBMSs are accessed through languages with support for persistent objects,
usually extensions of existing general purpose programming languages. The ODMG language bind-
ings define extensions to the languages to support and integrate OQL, navigation and transactions.
Currently, language bindings for C++, Java and Smalltalk have been standardized.
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2.2.2 The ODMG Standard in Practice

The ODBMS vendors have been slow at adopting the ODMG standard, and unfortunately, they cur-
rently seem even less eager to do so. Vendors can claim compliance with one or more components
of the ODMG standard, i.e. one or several of the C++/Java/Smalltalk language bindings, and OQL.
Even though many vendors claim that their systems are ODMG compliant, the lack of certification
procedures is a problem. The only vendor close to supportingthe whole standard wasO2, which is
no surprise, as the standard itself, especially OQL, borrowed heavily fromO2. However, theO2 is no
longer on the market.

Currently, there seems to be little interest in continued work on the ODMG object model, OQL,
and the language bindings. The model is only used in the ODMG specification itself, the ODBMS
vendors prefer to use their proprietary C++ language bindings, and OQL has only limited support.
Most of the interest at the moment is in the Java binding and object/relational mappings, and it is very
likely that future work will be in these directions.

2.3 Object Database Systems

To set our work into perspective, we briefly summarize previous work on ODBMSs. We have sum-
marized all implemented systems we are aware of in Table 2.1.This summary is provided for two
reasons. First of all, we want to show that ODBMSs have been anactive research area, and still is.
Second, we provide the summary with references, to make it easier for others to probe earlier works, as
we are not aware of any other published summary or survey trying to cover the implemented systems.
In this summary, we classify the systems in three groups:� Early approaches.� ODBMSs and storage managers with language binding.� ORDBMSs.

For the commercial systems, the publications cited do not necessarily represent descriptions of the
current versions of the commercial systems. For information on current versions of the systems and
their features, the reader is encouraged to visit the Web sites of the respective ODBMS companies.

2.3.1 Early Approaches to Persistent Programming Languages

Traditionally, users and applications have communicated with the database system through special
data definition languages (DDL) and data manipulation languages (DML). Operations on tuples have
been done with some predefined functions. If more advanced operations were desired, a general
purpose language with embedded database language functions were used. With this approach, you
get a language impedance mismatch.

To avoid the language impedance mismatch, new systems was developed. In these systems, there
were no distinction between database (persistent) and no-database (transient) data, the same language
is used for both. The first such systems were ASTRAL [32, 33] and PASCAL/R [181]. Later, other
systems followed, for example PS-algol [49]. In the next phase of the evolution, persistent versions
of Smalltalk and persistent C++ became popular, used in combination with the storage managers
summarized in the next section.
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Name References
AGNA [145]
Amadeus [80, 203]
BeSS [17]
Bubba [28]
Cricket [186]
Daĺı2 [99]
DASDBS [180]
Eiffel** [137]
Encore [89]
EOS [81]
EXODUS [38]
EyeDB
GemStone [37, 133]
ITASCA [97]
Iris [68, 215]
Jasmine [95]
KIOSK [146]
Lumberjack [92]
MATISSE [134]
Mneme [140, 142]
Monet [26, 27]

Name References
O2 [7, 53, 165]
Objectivity [167]
ObjectStore [118, 171]
OBST [42]
ODB-II [168]
ODE [71]
ONTOS
ORION [112]
OSAM*.KBMS/P [201]
PJama [175]
Poet
PPOST [22]
PRIMA [74, 75]
Ptool [79]
QuickStore [214]
Shore [39]
Texas [189]
Thor [128, 130]
Tycoon [135]
Versant
VODAK [115]

Table 2.1: ODBMSs and storage managers with language binding.

2.3.2 ODBMSs and Storage Managers with Language Binding

After the first attempts with database programming languages, systems more closely resembling what
we today call object database management systems entered the scene. In many of these systems,
the focus was more on persistent programming than database management, and as a result, many of
these system have only a very primitive query language, if any at all. However: all systems share one
important goal, removing the language impedance mismatch.

The number of ODBMSs and storage managers with language binding is quite large, and the
implemented systems we are aware of are summarized in Table 2.1. Most of the systems are only
research prototypes, but some of them are commercialized ODBMSs: GemStone, Itasca, Jasmine,
MATISSE, O2, Objectivity, ObjectStore, ODB II, ONTOS, Poet, and Versant.

Several systems are marketed as ODBMSs, but are not includedin Table 2.1. The reason for not
including theses, is that they either lack some of the more important features expected from ODBMSs
(they would more correctly be classified as object file managers or indexing tools), or that we have
only limited information about the systems. The systems omitted from the summary include Ac-
tiveInfo, GOODS/POST++, Jeevan, Neoaccess (NeoLogic), ObjectFile (ObjectFile Ltd.), OOFILE
(A.D. Software), Persist (Persist AG), PLOB! (Persistent Lisp OBjects, from University of Hamburg),
Tenecit (Totally Objects), and TERSOL (TechKnowledge).

In addition, several systems use one of the systems in Table 2.1 as the storage manager in the
system. This includes AllegroStore, which combines ObjectStore with CLOS (Common Lisp Object
System), Multicomputer Texas [18] (described in Section 3.11.3), which uses Texas as the storage
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Name References
DB2 [41]
Illustra/Informix Universal Server
Oracle 8
POSTGRES [195, 200, 197, 198]
Starburst [85, 131]
UniSQL

Table 2.2: Object Relational Database Systems.

manager in a parallel ODBMS, and Open ODBMS [20] and METU ODBMS [58], which both were
developed on top of the Exodus storage manager.

2.3.3 Object-Relational Database Systems

ORDBMSs3 carry on the relational paradigm. Data is still organized inrelations, but the systems
offer additional features, including support for more complex data types, and large objects. The most
well-known of these are summarized in Table 2.2.

The history of ORDBMSs started with POSTGRES,4 later commercialized into Illustra/Informix
Universal Server. Currently, most major RDBMS vendors haveextended their products to support
object-relational features. Some ODBMSs, included in Table 2.1, have also been marketed as object-
relational, or have features that make it possible to classify them as object-relational, for example
MATISSE and ODB-II.

It is possible to implement an ODBMS on top of an ORDBMS backend, and vice versa. Examples
are Paradise [55, 173], which uses Shore [39] as its underlying persistent object manager, and several
commercial products that offer Java and C++ language bindings on top of ORDBMSs. Based on
this observation, one might think that the division of ODBMSand ORDBMS is artificial, and that
the ODBMS vs. ORDBMS discussion is more a debate on what interface to make available for users
and programmers. It is important to note that this is not the case. While such approaches deliver the
functionality, they are in general not efficient and scalable approaches.

2.4 Summary

We have in this chapter described the most important features of ODBMSs, given an overview of the
ODMG standard, and provided an overview of previous and existing ODBMSs. Although we have
tried to make the overview as complete as possible, we are fully aware that the list is not complete:
many projects have been completed without any publication efforts, and new systems are developed
and marketed as this thesis is written.

2Dalı́ has now been commercialized, and renamedDatablitz.
3Object relational database systems were previously calledextended relational database systems.
4A “cleaned up version” of POSTGRES,PostgreSQL, is continuously under development by “the public domain com-

munity”.
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Chapter 3

Design Issues

The design of an ODBMS introduces new issues not found in RDBMSs. Each design issue may have
alternative solutions, and few have definite answers. Many of them are also highly related, one of
the alternatives for one issue can rule out alternatives forother issues. In this chapter, we discuss the
most important issues, and provide a background for the description of Vagabond. This chapter also
establishes the terminology which will be used in the rest ofthis thesis.

3.1 Object Identifiers

An object in an ODBMS is uniquely identified by an object identifier (OID). This OID is used as the
“key” when retrieving the object from disk. OIDs can bephysicalor logical. If physical OIDs are
used, the disk blocks where an object resides is given directly by the OID. If logical OIDs are used,
it is necessary to use an OIDX index (OIDX) to map from a logical OID to a physical location. Most
of the early ODBMSs and storage managers used physical OIDs because of its performance benefits,
and many of the commercial ODBMSs still do. However, using physical OIDs have major draw-
backs: relocation and migration of objects are more difficult, which in turn makes schema changes
and reclustering more difficult. In a system that manages data which is expected to be stored for a long
time (which is the case for most databases!), with possible changing applications and access patterns,
logical OIDs should be used to avoid performance degradation later.

3.1.1 Physical OID

The OID is usually organized as a data structure, designed tohelp the ODBMS achieve good perfor-
mance. For example, consider the 64-bit OID used by the Objectivity/DB (illustrated in Figure 3.1):

1. A logical (federated) database can be composed of severalphysical databases, and the first field
in the OID identifies the physical database. A physical database is mapped to a file on a server,
so this field identifies the server and file where the object is stored.

2. A physical database is composed of a number of containers.The container field identifies the
actual container.

3. The page field identifies the page where the object is stored.

4. The slot field identifies the slot of an object on a page.
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Database Container1 Page Slot
16 bits 16 bits 16 bits 16 bits

Figure 3.1: OID in Objectivity/DB [167].

An OID organized as a data structure like the one described above helps in providing efficient access
to objects, but at the same time it also imposes a strict limiton the number of databases and containers
in the system. Although2i objects can be created during the lifetime of a database if anOID size
of i bits is used, the number is much smaller in practice. In real world applications, it is impossible
to exploit all these fields, and it is obvious that careful design is needed to avoid problems with the
maximum numbers of containers in the system. At the same time, it is also possible to get problems
because of the limited number of objects that is possible to store in one container. These problems
can be eliminated by increasing the OID size, but that reduces the storage efficiency.

3.1.2 Logical OID

Logical OIDs are more flexible. Objects can be relocated, andin theory, it should be possible to
exploit the whole range of possible OIDs, given a certain OIDsize. However, in practice, the structure
of logical OIDs is often similar to physical OIDs, for example the OID structure used in Versant [46].
If such a structure was not used, OIDs from the same collection and from the same database would be
distributed over the range of allocated OIDs, making the OIDX very unclustered.

The number of OIDs can be very large, and if logical OIDs are used, a fast and efficient index
structure is necessary. The OIDX is typically realized as a hash file or as a tree structure [62]. Most
common is the use of B-trees, but other specialized structures have been proposed: One example is the
hcC-tree[193], another example isdirect mapping[62], where OIDs contain the physical address of
the mapping information, and the mapping information is kept in a structure organized as an extensible
array.

3.1.3 Combination of Physical and Logical OID

To improve performance, it is possible to use a combination of physical and logical OIDs, as is done
in Shore [136]. In Shore, physical OIDs are used at the storage manager level. However, theValue
Added Server, which is the interface to the users/application programs,can support logical OIDs by
maintaining an OIDX.

3.2 Object Storage Structure

The way an object is stored, determines the update and query costs. In general, we have two primary
strategies:2� Direct storage model.� Decomposed storage models.

1One bit is for internal use, so that only 15 bits are used for the container number.
2Note that authors of the papers discussing these models, do not always use a terminology consistent with previous

definitions.
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3.2.1 Direct Storage Model

In the direct storage model, there is no fragmentation of an object. The object, with all its attributes,
will be stored as one contiguous sequence of bytes, similar to the in-memory version of an object in
most programming languages. Large objects can also be stored as a contiguous sequence of bytes, but
they are normally implemented with some access method to improve access efficiency.

3.2.2 Decomposed Storage Models

In the decomposed storage models [50], complex objects are decomposed so that each tuple in a
database file (set of pages), only contains one of the attributes, together with a surrogate (OID in
the case of an ODBMS). In one particular model, the binary storage model, attributes are stored as
(OID,value) tuples. Providing that the tuples from objects in a certain collection are clustered
together, this keeps the number of disk-reads to a minimum. This is very beneficial in applications
where set queries are frequent, but if the objects are used byapplication programs in a persistent
programming language, the objects have to be reconstructedbefore delivery. To reconstruct a set of
objects, join operations are needed. Several studies have been done to study these tradeoffs [11, 205].

3.3 Object Clustering

In general, an object page contains more than one object. Theperformance of an ODBMS depends
heavily on the number of object pages it has to read and write.In order to keep this number as low
as possible, we try to store objects that are expected to be accessed together, on the same page. This
process is calledobject clustering, and is done by using one or more of the following strategies:� Clustering hints.� Cluster trees.� Dynamic clustering.

In most systems, objects that have been made persistent by a given clustering strategy remain where
they are, even if the clustering policy changes (modification of the cluster tree in the case of a cluster
trees strategy, or changing access pattern in the case of dynamic clustering).

3.3.1 Clustering Hints

When using clustering hints, theapplication programmerhas to specify an existing object which
the new created object should be stored close to (if possible). The performance of this approach is
heavily dependent of an application programmer’s predictions of future access patterns, and is likely
to break down in more complex multiuser systems. Systems where this strategy is supported, includes
ObjectStore, Objectivity and O2.
3.3.2 Cluster Trees

Cluster trees is a more general approach to obtain good clustering. In this case, thedatabase ad-
ministratorspecifies rules for object clustering. Typical examples of clustering strategies are to store
together objects and related subobjects that are expected to be accessed together later, and members
of a set that are later going to be accessed in scan operations. This strategy is supported by O2 [165].
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Figure 3.2: Client/server architectures.

3.3.3 Dynamic Clustering

If dynamic clustering is supported, theODBMStakes all responsibility for the clustering, and uses
sampling of previous access patterns to decide where to store the objects. Algorithms and strategies
for dynamic clustering strategies include the Cactis algorithms [59] and stochastic clustering [207].
A combination of cluster tree and dynamic clustering is alsopossible, as described by Benzaken et
al. [10]. We do not know of any commercial ODBMS that supportsa dynamic clustering strategy.

The performance of some object clustering techniques, under different workloads, have been stud-
ied by Tsangaris and Naughton [208]. Of those studied, stochastic clustering [207] had the best aver-
age performance.

3.3.4 Reclustering

Although not yet supported by any of the commercial systems,adaptive on-line reclustering is possi-
ble. One approach is described by McIver and King [139], and the cost of monitoring and reorgani-
zation has been studied by Gerlhof et al. [73].

3.4 Client/Server Architectures

The architecture of an ODBMS is usually a client/server variant. A client requests data, performs
some operations on the data, and sends updated data back to the server. The exact division of the work
between a client and its server, for example which of them is indexing data, varies between systems.

Several client/server architectures are possible. Figure3.2 illustrates the most typical client/server
architectures, with processes drawn as circles, computer nodes as squares, and communication chan-
nels illustrated with arrows:� Figure 3.2a is asingle server/multiple clientarchitecture. This is the traditional and least com-

plex architecture, supported by most systems. The clients can run on the same node as the
server if desired.
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ity of connecting to the servers containing the data, and to manage distributed commit (2-phase
commit). This architecture is also supported by most commercial systems. A client can also in
this case run on the same node as one of the servers or as other clients.� Figure 3.2c is another variant of amultiple client/multiple serverarchitecture, similar to the
architecture of Shore ODBMS as presented in [39].3 In this case, a client connects toonly
one server, running on the same node. The server has the responsibility of fetching remote
objects/pages. A possible variant of this option, is clients residing on other nodes than the
servers they are connected to. The main point is that one client only connects tooneserver, and
this server communicates with the other servers as needed onbehalf of the client.

3.5 Method Execution

The client and the server are in general different processes, usually executing on different nodes.
When an object method is to be executed, this can be done either by theclient, by theserver, or by a
separate process on behalf of the clienton the server node:

1. Client node/client process: The method executes in the client’s address space.

2. Server node/client process: A process is executing on behalf of the client on the server node.

3. Server node/server process. The method executes in the server’s address space.

The problem with the first approach, is that all data have to besent from the server to the client,
something that easily makes the network a bottleneck. The two other approaches are (partial) solutions
to this problem, but at the same time they create some new problems, which we will discuss in the
following sections. Not all executed methods need to be executed in the same way. In systems that
support more than one of the options above, it is possible to choose one of the options, as a way of
tuning the performance.

3.5.1 Client Node/Client Process

Executing methods at the client, on the client node, is the most common in ODBMSs, and is supported
by all commercial systems [8].

In applications where good page clustering has been achieved, and with only moderate data vol-
umes, this approach works well. However, in the case of queries involving filtering operations (for
example attribute selection), this approach wastes valuable network bandwidth. If filtering could be
done on the server, less of the data actually has to be transported.

3.5.2 Server Node/Client Process

It is possible to run the whole client at the server node, but this can make the server node overloaded,
and we do not benefit from the processing power of the client node. To solve this problem, and still
avoid the drawback of the client node/client process, it is possible to execute some of the methods (or
some of the query) on the server node (but note that they run asseparate processes, i.e., not in the
same address space as the server process itself). This approach is supported by ITASCA [8, 97].

3This architecture was to our knowledge never implemented inShore.
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If the client and the server run on the same node, we have more options on how to do interprocess
communication. We can use message passing, as is done in general client/server communication. One
step further, is to make the server buffer itself available to the client. In this case,all clients access the
same buffer, and the design of such a buffer has to be done very carefully:� If using a shared read/write buffer, clients as well as the server itself can write to the buffer.

A shared buffer eliminates the need for a separate client buffer. A shared read/write buffer
gives good performance, and locking can be done efficiently,but it gives integrity and security
problems. A method can damage contents in the buffer in the case of failure, and there is no
check of access permissions. We consider this approach too vulnerable without a safe interface
language.� If using a read-only buffer, clients can read from the buffer, but not write. The clients need
separate buffers for modified objects/pages, or alternatively send modified objects/pages back
to the server immediately (which usually will prove to be inefficient). From a performance point
of view, a read-only buffer will in many cases be sufficient, because many of the typical heavy
queries are read-only queries. Security is still a problem,although encryption of shared memory
is possible. However, the cost of encryption would probablybe unacceptable. Integrity can also
be a problem if a client read data that is being updated by another client without adhering to the
locking protocol.

3.5.3 Server Node/Server Process

If the server knows the contents and structure of the objectsstored on the pages, it is possible to execute
methods inside the server process. Systems that support this approach include ITASCA, MATISSE,
POET, Objectivity, and Versant [8].4

Methods written in C and C++, which are popular programming languages for ODBMS applica-
tions, can literally do whatever they want, causing data integrity problems as well as damaging the
server process itself. This means that special care has to betaken if general methods should be allowed
to be executed by the server process. Several solutions to this problem exist:

1. Use a type-safe language as data manipulation language. This makes it easier to guarantee
that the methods executed in the language can not modify privileged data in the DBMS. This
approach has been used by Liskov et al. in Thor [128, 129, 130]. Variants of this approach is to
use safe “data access languages”. language

2. Software-based fault isolation. In this approach, code and data are loaded into their own fault
domain, a logically separate portion of the server address space, and the object code of the
method to be executed is modified to prevent it from writing orjumping to an address outside
its fault domain [211].

3. Interpreting the code. As Java has gained popularity, this option has become more commercially
popular. Most commercial ODBMSs already support a Java binding, but in most cases, client
methods are still only executed by the client. Interpretingthe code is also done in Jasmine [95],
where a reduced functionality C interpreter is used.

4MATISSE and Objectivity only support SQL queries at the server, while Versant can only execute registered events
(change notifications/triggers).
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4. Trusted methods. In an ODBMS, user supplied methods can bedeclared as trusted by the data-
base administrator. They can then be executed in the server’s address space, while untrusted
methods are still executed in a separate address space. A variant of this approach is the possi-
bility of user written “subservers” compiled into the DBMS.This is similar to theValue Added
Serverconcept in Shore [39], andDataBlades/Cartridgesin commercial ORDBMSs.

In the case of applications based on C and C++ language bindings, the trusted method approach
and the software-based fault isolation are the the only realistic alternatives. However, the increasing
popularity of Java makes C/C++ less popular as ODBMS application languages, and it is likely that
the type-safe language alternative (using Java) will be themost popular in the future.

3.6 Data Granularity

The issue of data granularity arises in several contexts in ODBMSs. From an application program
or query language point of view, data is usually accessed at object granularity. However, at the data
storage level, most ODBMSs handle data at page granularity,which means that fixed size pages are
read from and written to data volumes. We will now study the data granularity issues in ODBMSs, in
three different contexts:� Client-server data transfer.� Buffer management.� Concurrency control.

An issue not discussed here, ispage size. The aspects of page size have been mostly ignored
in ODBMS related research publications. Obviously, page size can affect performance, and among
commercial ODBMSS, we see that the page sizes differ. For example, Objectivity can use different
page sizes, up to 64 KB, while Versant has a fixed page size of 16KB.

3.6.1 Data Transfer Granularity

Most ODBMSs are variants of data shipping object or page servers. Object servers have objects as the
unit of transfer between the server and client, while page servers have pages as the unit of transfer.

The advantages of an object server are:5� If the objects on the object pages are not well clustered, shipping the whole page is a waste of
communication bandwidth.� Understanding the concept of an object makes it possible forthe server to apply methods on the
object. This is very important in order to be able to do filtering operations in object-relational
queries.� Fine-grained (object level) concurrency control is easy toimplement.

The advantages of a page server are:

5Parts of this summary are based on the descriptions by DeWittet al. in [54].



www.manaraa.com

24 CHAPTER 3. DESIGN ISSUES� If objects on the object pages are well clustered, shipping the whole page can save many object
requests and communication overhead for each object. This is also an issue even in the case
where the client runs on the same node as the server. If requesting only one object at a time,
two process context shifts are needed for each requested object (between client and server pro-
cesses). This is obviously a too much, even on a relatively fast node this would limit the number
of object requests per second to a number in the order of 50000.� Fixed size pages are easier to manage than variable size objects, and space allocation for pages
is easy on disk as well as in main memory.

Most commercial ODBMSs are page based. One exception is Versant, which is an object server, but
with some features to avoid the performance problems related to single object accesses as described
above:

1. Get closure, to retrieve references to all possible objects that can be navigated to, starting from
a group of objects.

2. Group read, to retrieve a specified group of objects, for example based on the result from aget
closureoperation.

The page server architecture has, since the study of performance of alternative architectures by DeWitt
et.al. [54], been considered as superior to object servers.However, that study was done under the
assumption that each access to an object not resident in the client cache needed one remote procedure
call, although it is noted that it would be possible for the server to simulate a clustering mechanism
by figuring out what related objects might be needed. The study also appears to be misinterpreted (on
purpose?) by many of the commercial companies. The paper’s conclusion is actually that there is no
clear winner in this study. An even more important factor,notconsidered in the paper, is that different
applications often have different access patterns to the database. This means that it can be impossible
to get a good clustering. Recent evaluations of real world applications, for example by Hohenstein et
al. [88], support the view that object servers in many cases will perform as well as, and in many cases
much better than, a page server. This is also verified by Kempeet al. [105]. One drawback of page
servers that should be taken more seriously is the security and integrity risks of clients operating on
pages.

In our opinion, the most important argument in favor of the object server architecture is the possi-
bility to do some of the work at the server side. This is especially important for complex set operations,
where filtering operations can significantly reduce the amount of data transfer. This has been a ne-
glected issue in ODBMS, but we expect set operations to be given more attention in the future. This
issue is also discussed in more detail in Appendix A.

3.6.2 Buffer Granularity

In the previous section we discussed the data shipping granularity. A related issue is the buffer gran-
ularity. We have the following alternatives:� Page buffer.� Object buffer.� Dual buffer.
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Note that buffering at the server and the clients may be handled differently. For example, the server
can use a page buffer, while the clients use object buffers. However, if data transfer granularity is
pages, it does not make sense to have an object buffer at the server side.

It is also important to note that multiple copies of data might reside in different client caches.
Replica management is necessary to ensure cache consistency. Cache consistency is usually achieved
by using pessimistic locking-based cache consistency protocols [40].

Page Buffer

Most ODBMSs use a page buffer. If objects on object pages are well clustered, a page buffer makes
good use of the buffer memory. Fixed size pages are also easy to manage. Space allocation is easy,
and we have no memory fragmentation problem.

Object Buffer

With an object buffer, objects are stored as independent objects in main memory, and not in the pages.
This approach is beneficial if objects on the object pages arenot well clustered. In that case, storing
the whole page in main memory is a waste of space, because manyobjects in memory are not really
needed there. The result will be a lower buffer hit rate than necessary when accessing objects. Another
advantage is that it is possible to store objects larger thanone page as one contiguous object, which is
beneficial if server side execution of methods is possible.

Disadvantages of using an object buffer is that the per object overhead in an object buffer can be
quite high, and we must expect some degree of memory fragmentation as well. Updates are also more
complicated if we employ in-place updates. In that case, when a dirty object is to be written back to
disk, it is necessary to first do an installation read of the page where the object should be stored.

Dual Buffer

A third alternative is a combination of page and object buffers. In this case, we try to keep well
clustered pages in a page buffer, and objects from less clustered pages in an object buffer. This
approach is used in several commercial systems, including Itasca, Ontos and Versant [52].

A thorough study of client side dual buffering by Kemper and Kossmann [108] showed that dual
buffering can give a substantially higher buffer performance than a page buffer. However, the use of
a dual buffer introduces several new options that makes tuning more complicated, for example when
to copy an object from the page buffer to the object buffer, and when to copy a dirty object in the
object buffer back to its home page. This makes it less clear how well dual buffering would perform
in systems with complex workloads. Also, the study showed that dual buffering was mainly beneficial
with read queries, with update queries the gain was less or negative.

3.6.3 Concurrency Control Granularity

Concurrency control can also be done at different granularities. This is usually adaptive, and can be
fine grained, e.g., object, or coarse grained, e.g., page or file granularity.

3.7 Buffer Management

Keeping the most frequently used data in main-memory buffers reduces the number of disk accesses.
Efficient buffer management is crucial to achieve good performance, and in this section we will discuss
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buffer allocation and replacement.

3.7.1 Buffer Allocation Algorithms

With fixed size granules, for example pages, buffer allocation and deallocation is straightforward, and
we have no memory fragmentation.

With variable sized granules, we will in practice have some degree of memory fragmentation.
The amount of fragmentation is dependent of the amount of CPUwe are willing to use to reduce the
fragmentation. Using buddy allocation, which has a low CPU cost, gives a memory utilization of
approximately 80%. However, it has been shown that it is easyto get a memory utilization above 90%
by only a marginal increase in the CPU cost [70, 104].

3.7.2 Buffer Replacement Algorithms

The main-memory buffers can usually only keep a selected subset of the contents that are stored on
secondary and tertiary storage. When an item is brought intomain memory, another item has to be
removed from the buffer to make space for the new item.

Buffer replacement is often LRU based. In the case of a page buffer, the pages are usually linked
in an LRU chain. The overhead of an LRU chain is acceptable when the size of the pages is much
larger than the extra data structures needed for the LRU chain. With a finer granularity, there is a larger
number of granules, and a higher number of accesses to each ofthem. In this case, the traditional LRU
chain can be a bottleneck:� The memory overhead may be too high. For the LRU chain, two pointers are needed for each

item.� The CPU overhead can be too high, because we have to update thechain on every access.� When the buffer is shared between several threads or processes, the pointers need to be protected
by semaphores, and the head of the chain will often become a semaphore bottleneck.

Good approximation to LRU, useful for finer granules, are theclockandenhanced clockalgorithms [61],
also called second-chance algorithms. With the clock algorithm, only one overhead bit is needed for
each granule, anaccess bit. For the enhanced clock algorithm, two bits are used, anaccessand adirty
bit.

When using the clock algorithm, the access bit is set each time an item is accessed. The buffer is
treated like a circular queue. We have aclock arm(a pointer) that points to an item. When we need
a candidate to discard during replacement, we move the clockarm clockwise until we find an entry
where the access bit is not set. When we move the clock arm overitems with the access bit set, we
reset the access bits while we move the arm. In this way, an item will be discarded the next time the
clock arm points at it, if it has not been accessed in the meantime.

With the enhanced clock algorithm, we also consider the dirty bit when deciding which item to
discard. In general, it is cheaper to discard an item that is both clean and has not been accessed for a
while, because it does not have to be written back before it isremoved.

The advantages of using a clock algorithm are:

1. Lower cost when accessing an item, only the access bit has to be updated.
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2. Less synchronization overhead is necessary. For example, no locks need to be acquired when
an entry is accessed. That would be necessary when moving entries after an access in an LRU
list.

3. If the access bits for the entries are stored in a packed format, i.e., access bits for several entries
are stored in one machine word, the space overhead is reducedconsiderably. In this case,
locking the word where an actual access bit resides, is necessary to get a serialized behavior,6

in order to avoid loosing aset bitoperation if two threads try to update different bits in a word
by doing aread word, set bit, write wordsequence. However, loosing an occasional access
bit update should not seriously affect the buffer hit performance, so in practice, locking is not
necessary!

3.8 Indexing

Indexing is a well-known technique used to reduce the query costs in DBMSs. In RDBMSs, only
primitive attributes are indexed, but the increased expressiveness of the ODBMS data model makes
new indexing techniques possible as well. There are also some aspects that is different in RDBMS
and ODBMS indexing, and should be kept in mind:� In RDBMSs indexing is not an integral feature, although veryfrequently employed. In an

ODBMS, on the other hand, indexing is always employed. As discussed in Section 3.1, every
object has an unique OID which can be used as a handle to retrieve the object.7� In RDBMSs the relation as an extent, i.e., all members of the relation, is always maintained. In
the case of object classes in ODBMSs, this is optional. In some systems, the extent is always
implicitly maintained, while in other systems, this has to be done explicitly, with additional cost
as a result.� Although indexing primitive attributes in ODBMSs can be similar to indexing attributes in
RDBMSs, the indexing is more complex due to existence of class hierarchies [112].

In the rest of this section we give a brief overview of path indexing and function materialization,
which are not issues in RDBMSs, but can be important in order to achieve good query performance
in ODBMSs.

3.8.1 Path Indexes

Most ODBMS query languages allow queries on path expressions (usually expressed by thedotnota-
tion). Several techniques for indexes supporting path expressions have been proposed. These include
differentpath indexes[13, 14] as well asaccess support relations[109].

Path expressions is actually a kind of implicit join. If no path index exists, it can be cheaper to use
explicit join techniques (pointer-based joins) in set queries, instead of doing pointer traversals [188].

Related to path indexing, isfield replication[187], where the field (attribute) at the end of a path
expression is replicated, and stored inside the first objectin the path.

6If a set bitoperation exists, this is not necessary. However, single bit operations is not always available, usually they
are provided only by CISC processors, for example the Intel x86 family.

7In the case of physical OIDs, the indexing is implicit.
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3.8.2 Function Materialization

Predicates in ODBMS queries can involve methods as well as attributes. It is possible to use precom-
puted values for methods to increase query performance. This technique is calledfunction material-
ization [106].

3.9 Swizzling

Pointer swizzling is the process of converting pointers in an object from disk format (physical or
logical OIDs), to memory addresses, so that subsequent object navigation operations do not have to
go through an index or “resident object table” in order to findthe actual object. Although swizzling
has not previously been considered as a server issue, it is likely that it can increase the performance if
methods can be executed by the server.

The possible gain from swizzling does not come for free. If anobject has been modified, all
swizzled pointers to this object have to be changed back to disk format before the object is removed
from the buffer. Thus, swizzling is only beneficial if the swizzled object is referenced several times,
and the update rate is sufficiently low. Several swizzling strategies exists [141, 213]. Which strategy
to use, and whether to swizzle at all, depends heavily on the access pattern, and adaptable swizzling
strategies might be a good alternative [107].

3.10 Query Processing

Query processing in an ODBMS can be done in much the same way asit is done in a RDBMS [110,
219]. The user8 submits a query to the system, usually in some declarative language. This query
is optimized, normalized, and transformed to some object algebra expression. After type checking,
algebra optimization is performed, and an execution plan from this optimized algebra expression is
generated and executed. Similar to a RDBMS, the difference in execution time between a query with
good optimization and a query with bad optimization, can be several orders of magnitude.

Even though the basic techniques are the same as in RDBMSs, ODBMS query processing has
many aspects which makes it more complex than query processing in RDBMSs. The most important
differences are [111, 219]:� ODBMSs have a much richer type system than RDBMSs, which onlyhave the single aggregate

type relation. In ODBMSs, queries can be performed on various kinds of collections, where
members can be of different types.� Encapsulation and methods: how much should the system know about the implementation of a
method, and should it be able to break encapsulation?� An object may reference other objects, and accessing these objects involves path expressions/implicit
joins.� In ODBMSs, indexing can also be done on access paths, not onlyon primitive attributes, as in
RDBMSs. Class hierarchies also complicate the use of indexing.

8User in this context can be either a person giving a command tothe DBMS, or an application program sending a request
to the DBMS.
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object access more complicated.� Cyclic queries need special attention.

These differences, the availability of different kind of indexes, and the choice between forward and
reverse traversal (whether to start on the target class/root of query graph, or at any intermediary)
increase the number of possible query plans. This makes the process of evaluating query plans more
costly and difficult in an ODBMS compared to a RDBMS.

3.11 Parallel ODBMSs

The performance of a DBMS can be increased by increasing the available hardware resources. This
means more powerful hardware, or duplication of resources.Employing more powerful hardware is
one solution that has been considered “easy”, as it has no consequences for the implementation of
the ODBMS itself. However, this strategy is only cost effective up to a certain point. After that,
duplication of resources, i.e., a larger number of CPUs and disks, is needed. It should also be noted
that this strategy is more difficult than it looks, because the CPU speed, memory- and disk bandwidth
have to be kept in balance.

If using more than one CPU and more than one disk, work has to bedistributed over the CPUs and
the disks in a way that make all of them busy most of the time, and avoids any single bottleneck. Even
though parallelization of “simple” set queries are well understood from the work on parallel query
processing in RDBMSs, parallel query processing in ODBMSs is less mature. There are several
reasons for this, but the most important is that ODBMS query processing can be very complex in
itself. The fact that the architectures of most systems are based on data shipping, makes filtering on
the servers difficult, and it is difficult to keep the data transfer volume at a moderate level.

In this section, we discuss parallelization in ODBMSs. We start with a presentation of alternative
parallel architectures, and then give an overview over issues in parallel query processing. To set the
work presented later in this thesis in context, we also summarize work on previous parallel ODBMSs.

3.11.1 Alternative Parallel Architectures

Even on single processor computers, as illustrated in Figure 3.3a, multiple disks are common, and
if used to host a DBMS, are necessary in order to provide redundancy in the case of media failure.
A larger number of disks can also be used to improve the data transfer bandwidth and transaction
throughput, for example by using RAID technology. The advantage of this approach, is that it is
relatively easy to utilize the disks.

Current servers are often symmetric multiprocessors (SMP), with a number of disks attached. In
an SMP, all processors have equal access to memory and disks.This is called ashared everything
configuration (see Figure 3.3b). The limiting resource in anSMP node is the bus, which soon gets
saturated as more processors are added. The advantage with this approach, is that it is relatively easy
to utilize the CPUs if the DBMS is implemented as a multithreaded or multiprocess server.

A further improvement isshared disk, where processors have equal access to the disk system, but
not on the same bus (see Figure 3.3c). In a shared disk configuration, issues such as fragmentation
and clustering are easier than for a shared nothing approach. Shared disk is the traditional mainframe
approach, and has not been very common in the case of systems made from off-the-shelf hardware.
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However, with the increasing popularity of storage area networks, using Fibre Channel, we expect it
to be more common in future systems.

The most scalable approach isshared nothing(see Figure 3.3d). In this case, we have a number
of nodes which each has local memory and a number of disks. Thenodes communicate through some
kind of interconnection network, using message passing. A shared nothing computer is also com-
monly called amulticomputer, but nowadays, a cluster of workstations connected to high bandwidth
network is also suitable as a platform for a parallel database server.

3.11.2 Parallel Query Processing

We will in this section concentrate on issues related to shared nothing servers. However, it should
be noted that some of the work done in the context of multiprocessors is also relevant, including the
research on parallel query evaluation done by Härder et al.[90], and on optimizing and parallelizing
ODBMS programming languages by Lieuwen et al. [127].

Data Distribution

Optimal allocation and fragmentation is very important, but complex objects, object classes and inher-
itance increase the size of the solution space for the data distribution problem. These issues have been
studied by a number of researchers, including Gruber and Valduriez [82], Karlapalem et al. [103],
and Ghandeharizadeh et al. [76]. Ghandeharizadeh et al. also show how replication can be efficiently
employed to increase performance. It has also been shown that in a parallel system where it is possible
to store most of the working set in main memory, utilizing theaggregate memory of all the nodes can
significantly improve the performance [209, 210]. A more detailed discussion if the data distribution
problem is given in Chapter 11.

Query Processing

Optimal data distribution is in general heavily linked to queries on the data. This has been studied in
detail by Kim [111] and Chen and Su [48]. In many cases, redistribution of data can be efficient [121].
Parallel join algorithms for set-valued attributes is described by Lieuwen et al. [126].

3.11.3 A Brief Overview of Parallel ODBMSs

We will now give a short description of previous parallel ODBMSs. With one exception (Objectivity),
all the described systems are research prototypes. Severalof the prototypes (ADAMS, AGNA, and
PPOST) are systems built as a part of a PhD work, and seems to have been abandoned after the PhD
work was finished. One of the systems, Shore, has never been implemented as intended (multi-server
version), while the work on Multicomputer Texas seems to have been restricted to the cited paper only.
All in all, these systems illustrate well how immature the area of parallel ODBMSs is. Although the
complexity of the area is one reason why so little research has been done, it is likely that the advent
of ORDBMSs, which had a negative impact on the amount of ODBMSresearch in general, also has
been important. However, the results from some of these projects have been convincing enough to
make us believe that this is an area that deserves more activeresearch.

In addition to the systems described here, some of the commercial systems also provide some
support for multiple servers. However, the application programmer has the responsibility for the dis-
tribution of data, and the support for distribution mostly means “the system supports 2-phase commit”.
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ADAMS

ADAMS is a parallel “data management system”, running on a network of workstations [86, 174]. It
has many ODBMS features, but lacks concurrency control and recovery, which are important features
of a database system. Its main application area is SSDBs, an area where these features often are of
minor importance.

ADAMS employs the decomposed storage model for object storage, and declusters objects by the
OID. The system processes set operations by streaming of data like most parallel RDBMSs, and has
shown good performance and scalability.

AGNA

AGNA [145], a persistent programming system, is based on a LISP like environment. The system is
designed to run on a shared nothing multicomputer. Objects are referenced by their heap address. The
heap is global, and distributed over the nodes in the system.

Bubba

Bubba is a highly parallel DBMS [28]. Its application area isdata-intensive applications. Data is
horizontally partitioned (which favors objects with few references to other objects), and performance
depends on executing operations at the node where the objectresides. This is supported by the use of
automatic parallelization by the Bubba compiler and an analytical model for data placement.

Eos

Eos, which is short forEnvironment for building Object-based Systems, is a distributed single-level
store [81]. Distribution of data over the nodes is supportedby facilities in the Mach operating system.
Eos is supposed to be scalable, but there are no data on performance that can support this claim.

Multicomputer Texas

The Multicomputer Texas [18] is a parallel object store based on the Texas object store [189]. Multi-
computer Texas has been implemented on a Fujitsu AP1000 multicomputer and a network of worksta-
tions. A modified Texas object store is run on each node, providing a global persistent address space.
In this way, we can see it as a distributed shared memory implementation. No support for parallel
query processing or efficient declustering of data is provided, and performance is highly dependent of
the locality of data to be accessed at the nodes. In this respect, we feel that the practical value of the
implementation is limited.

Objectivity

Objectivity [167] is the only commercial ODBMSs that is ableto use parallelism to significantly
increase performance. Objectivity is a page server ODBMS, employing NFS (Network File System).
The servers run on ordinary network connected workstations, and the distribution of data can be used
to increase performance as well as availability (by replication). Objectivity has been chosen as the
ODBMS to be used in the CERN RD45 project, where experiments will generate an amount of 1 PB
of data a year, and up to 1.6 GB/second data rate [44, 45, 46, 47].
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OSAM*.KBMS/P

OSAM*.KBMS/P is a parallel, active, object-oriented knowledge base server [201]. The server runs
on a shared nothing computer (nCUBE2), and the clients on workstations connected to the nCUBE
via Ethernet. The knowledge base is partitioned class-wise, i.e., all members of a class is stored on
the same node. A global transaction server is used to supervise executions.

PPOST

PPOST [21, 22, 23] is a parallel, main-memory object store, implemented on a cluster of worksta-
tions. Because transactions are committed to disk sequentially, the architecture is only suitable for
application areas with a small number of concurrent transactions, and where transactions are short in
time, but with high data bandwidth.

Shore

Shore [39], Scalable Heterogeneous Object REpository, is apersistent object system with many novel
features. The most interesting in the context of this section, is the introduction of a symmetric peer-to-
peer server architecture. All application programs in the system are connected toone server, running
on the same node. This server is the gateway to the DBMS. Unfortunately, multi-server Shore has
never been implemented, although some research have been done on parallel set processing by the use
of ParSets [57], and global memory management [209, 210].

The storage manager of Shore has later been used in Paradise [55, 173], a parallel DBMS for GIS
applications. Paradise is described by the authors as object-relational, rather than object based (or
object-oriented).

3.12 Summary

The design of an ODBMS introduces new issues not found in RDBMSs, and we have in this chapter
discussed design issues in ODBMSs, with an emphasis on issues that are specific for ODBMSs. The
discussions in this chapter will be used as a background for the description of Vagabond, as well as
establishing the terminology which will be used in the rest of this thesis.
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Chapter 4

Temporal Database Systems

The rest of this thesis will concentrate on the design of a temporal ODBMS. It is therefore appropriate
to start with an introduction to temporal DBMS in general, the terminology, and related work in the
area. This chapter is not intended as a complete study on temporal databases, its purpose is only to
give the reader the necessary background to comprehend the rest of this thesis.

4.1 What is a Temporal DBMS?

A temporal DBMS is a DBMS that supports some aspect of time. Informally, this means that data
is associated with time, and that a tuple (temporal RDBMS) orobject (temporal ODBMS) can exist
in several versions, each version being valid in a certain time interval. An example is the salary of a
person. Each time the salary is changed, a new version of the person’s salary tuple/object is created.
In a temporal DBMS, this versioning, related to time, is supported and maintained by the system,
which also provides support for querying the data.

Even before people started to think about temporal DBMS as anarea of its own, time has been
related to data in a database, for example by the use of an attribute containing a time value. Typical
examples are attributes such as “birth day” and “hiring date.” However, there has not been support
for temporal aspects in the query languages, and queries andmanagement have been done in various
ad-hoc ways. In our terminology, we call this uninterpretedattribute domain of date and timeuser-
defined time. A temporal DBMS is now defined as a DBMS that supports some aspect of time,not
counting user-defined time. A traditional, non-temporal DBMS is called a snapshot database system.
Not all data stored in a temporal DBMS needs to be temporal andthe data that is not temporal is called
snapshot data.

Even though temporal databases have a long history, it is only very recently that research in this
area really has taken off, and more importantly, the industry has begun to signal interest in the work.
Two projects have in particular contributed to the current interest and results in the area: theconsensus
glossary of temporal database concepts[101], and thetemporal structured query language(TSQL2)
specification [191]. The consensus glossary is recommendedby a significant part of the temporal
database community, and the definitions and terminology in this chapter are based on that glossary.

4.2 Data Models

Many temporal data models have emerged during the years. A presentation of these is outside the
scope of this chapter, and we will only give a brief overview of the most important aspects of these
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models.

4.2.1 The Time Domain

Time models can be linear, branching, or cyclic. In a linear time model, time advances from the past
to the future in an ordered step by step fashion. In a branching time model, time can split into several
time lines, each representing possible event sequences. Ina cyclic time model, we can also have
recurrence. One example is a week, where each day recurs every week [218].

The time line itself can be either discrete or continuous. Ifdiscrete, each point in time has a single
successor, like natural numbers. If continuous, there are no gaps, similar to real numbers. In most
models, a discrete time line is used, where we have a non-decomposable time interval of some fixed,
minimal duration of time called achronon. Important special types of chronons include valid-time,
transaction-time, and bitemporal chronons. A data model will typically leave the particular chronon
duration unspecified, to be fixed later by the individual applications, within the restrictions posed by
the implementation of the data model.

4.2.2 Aspects of Time

The most common aspects of time in temporal DBMSs is transaction time and valid time.

Transaction time: A database fact is stored in a database at some point in time, and after it is stored,
it is currentuntil logically deleted. The transaction time of a databasefact is the time when the fact
is current in the database and may be retrieved. Transactiontimes are consistent with the serialization
order of the transactions. Transaction-time values cannotbe later than the current transaction time.
Also, as it is impossible to change the past, transaction times cannot be changed. Transaction times
may be implemented using transaction commit times, and are system-generated and -supplied. It is
important to note that each update of an object creates a new current version. We call the non-current
versionshistorical versions.

Valid Time: The valid time of a fact is the time when the fact is true in the modeled reality. A fact
may have associated any number of instants and time intervals, with single instants and intervals being
important special cases. Valid times are usually supplied by the user.

Valid times can be open-ended intervals. One example of this, is the existence of a house. We
know when it was built, but now when it will be removed.

Bitemporal: Temporal DBMSs can also support a combination of these aspects, bitemporal data.
Bitemporal data have exactly one system supported valid time interval, and exactly one system-
supported transaction time.

A bitemporal interval is a region, with sides parallel to theaxes in a two-space of valid time and
transaction time. When a bitemporal interval is associatedin the database with some fact, it identifies
when that fact was true in reality (during the specified interval of valid time), and when it was logically
in the database (during the specified interval of transaction time).

A good example to illustrate the use of transaction and validtime, is a GIS database. In this
database, objects such as houses and roads are stored. When an object is stored in the database, it is
timestamped with the transaction time. However, the time this actual object existed in the real world is
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in general different from the time it was entered into the DBMS. For this purpose, it is also necessary
to store the valid time of the objects in the database.

4.3 Temporal Queries and Query Languages

Several query models for temporal databases have been proposed, and others are likely to be proposed
in the future. In practice, most research on temporal databases is now based onTSQL2[191], an
extension of SQL-92. TSQL2 provides language constructs for schema definition, schema evolution
and versioning, and querying and updating temporal relations. The goal of the language design was to
form a common core for future research, more than designing alanguage for the commercial market,
but work is currently under way to incorporate TSQL2 into SQL3 [190].

TSQL2 employs a simple data model, based on the relational data model. In the conceptual model,
thebitemporal conceptual data model, tuples are timestamped with a bitemporal interval.

Queries are performed on a collection of tuples. In additionto the traditional relational operators,
temporal operations are also needed. We will now present themost important temporal operations,
with examples based on TSQL2 [191].

4.3.1 Temporal Selection

With temporal selection, it is possible to retrieve data valid at a certain time,valid time selection, or
current at a certain time,transaction-time selection. It is also possible to do a selection based on both
valid and transaction time,bitemporal selection.

Several new operators are included in TSQL2 to be used in the temporal selection predicates,
including operators for comparison of timestamps:� FIRST(event, event)� element PRECEDES element� period CONTAINS period

To illustrate temporal selection, consider an example query from an employee database that lists all
of the employees who worked during all of 1991:

SELECT Name
FROM Employee
WHERE VALID(Employee) CONTAINS

PERIOD(DATE ’01/01/1991’, DATE ’12/31/1991’)

4.3.2 Temporal Projection

In a query or update statement, temporal projection pairs the computed facts with their associated
timestamps,1 usually derived from the associated timestamps of the underlying facts. The generic
notion of temporal projection may be applied to various specific time dimensions. For example, valid-
time projection associates with derived facts the times at which they are valid, usually based on the
valid times of the underlying facts.

1Note that a timestamp can also be an interval.
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4.3.3 Temporal Join

A temporal natural join is a binary operator that generalizes the snapshot natural join to incorporate
one or more time dimensions. Tuples in a temporal natural join are merged if their explicit join
attribute values match, and they are temporally coincidentin the given time dimensions. As in the
snapshot natural join, the relation schema resulting from atemporal natural join is the union of the
explicit attribute values present in both operand schemas,along with one or more timestamps. The
value of a result timestamp is the temporal intersection of the input timestamps, that is, the instants
contained in both.

4.3.4 Coalescing

Associated with each tuple in a temporal relation is a timestamp, denoting some period of time. In
a temporal database, information is “uncoalesced” when tuples have identical attribute values and
their timestamps are either adjacent in time or share some time in common. Coalescing is similar
to duplicate elimination in conventional databases, although potentially more expensive [25]. Its
purpose is to effect a kind of normalization of a temporal relation with respect to one or multiple time
dimensions. This is achieved by packing as many value-equivalent tuples as possible into a single
value-equivalent one.

Example: Given two tuples with the same non-temporal attributes and valid in the time intervals
[40, 50> and [45, 60>, respectively.2 The result of a coalescing these tuples isone tuple, with the
same non-temporal attribute values as the two input tuples,and the time interval [40, 60>.

4.3.5 Temporal Aggregation and Grouping

The main difference between traditional value-based aggregation and grouping, and temporal aggre-
gation and grouping, is the inclusion of time in the domain ofaggregates, and the possibility to group
on time. For example,MIN(VALID(R)) can be used to select the value of the oldest or earliest tuple
in a table. In addition to the traditional aggregate functions, new functions can be useful in temporal
databases. One example is theRISING operator in TSQL2, which is defined to return the longest
period which a numeric value was monotonically rising.

Time can be used as basis for the partitioning in the groupingpart of the aggregation. The time-
line can be divided into partitions, i.e., into time periods. For example, to compute the average salary
for each 3 month period along with the start date of the period, the following query can be used:

SELECT AVG(Salary), BEGIN(VALID(E))
FROM Employee AS E
GROUP BY VALID(E) USING 3 MONTH

4.4 Programming Language Bindings

In non-temporal ODBMSs, ODMG’s OQL or similar query languages can be used for ad-hoc queries.
Similar to the way OQL is a superset of the part of standard SQLthat deals with databases queries, it is
possible to design a temporal OQL that is a superset of TSQL2.One such approach has been described
by Fegaras and Elmasri [67]. However, one of the main advantages of ODBMSs is the avoidance of

2[T1, T2> is short for the time interval fromT1 to T2, includingT1 but notT2 (open-ended upper bound).
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the language mismatch by providing computationally complete data manipulation languages with no
mismatch between language and storage. In the ODMG standard, language bindings based on C++,
Java and Smalltalk are described. Such language bindings are also needed for temporal ODBMSs. It
should also be noted that in order to use methods in queries, these issues have to be resolved.

A general purpose programming language is only designed forcurrent data. Integrating support
for access of historical data into a programming language introduces a lot of interesting but difficult
issues, including:� Which object interface/signature to use when accessing a historical object version. The schema

might have been changed since the historical version was created, so that the current interface
to the class is different from the one previously used.� Which method implementation to use when calling methods in historical objects. One straight-
forward approach is to use the implementation that was current at the same time as the actual
object version was current. However, this is not necessarily what we want, if the reason for a
new implementation of a method was a bug in the previous version. This problem can be solved
by providing the necessary information at schema change time.� How to integratetime into the syntax of the programming language.

In the rest of this section, we will discuss the integration of access to historical data into a general-
purpose programming language.

4.4.1 Temporal C++ Binding

In this section, we describe two approaches that extend the C++ language binding with support for
access to historical data in a transaction-time ODBMS. The first approach is based on the language
binding used in POST/C++ [202], while the second is to our knowledge new. The concepts of these
approaches can also be employed for a Java language binding.

Explicit Object Version Access

The easiest way to integrate object version access into the programming language is to provide explicit
access to the versions. This is the way it is done in POST/C++ [202]. Given an OID, the program
can be given a pointer to a historical version valid at a particular time by calling a functionsnap-
shot(OID,time). It is also possible to create iterators that can be used to navigate the versions of
an object in chronological sequence.

This approach should be easy to use and understand, but if it should be possible to call a method in
a historical object version that accesses other objects, the historical version must itself do the necessary
operations in order to retrieve the objects valid at the sametime as when the version was created.

The Explicit Snapshot Approach

A better and “cleaner” alternative than the one described above is to use explicit snapshots. Before
calling a method in a historical version current at timets, we set the snapshot time with a call to the
functionset snapshot(d Timestamp ts). After theset snapshot() function has been
called, an access to a particular object will be to the objectversion current at timets, even though the
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reference is through ad Ref.3 A call to set current() will set accesses back to normal, i.e., an
access to a particular object will be to the current object version. Methods called in historical objects
should in general be immutable, i.e., read-only methods. The advantage of this approach is that all
object versions accessed will be object versions valid at the same time.

All access, creation, modification and deletion of persistent objects must be done within a transac-
tion. In the ODMG C++ binding, transactions are implementedas objects of the classd Transaction [43]:

class d Transactionf
public:

d Transaction();�d Transaction();
void begin();
void commit();
void abort();
void checkpoint();
...

private:
...g;

Theset snapshot(d Timestamp ts) andset current() functions are performed in the
scope of a certain transaction, so it is reasonable to extendthe ordinary C++ transaction class with
these methods, for example with a derived class based ond Transaction, which includes these
functions as methods:

class d TTransaction:public d Transactionf
public:

void set snapshot(d Timestamp ts);
void set current();

private:
...g;

Each temporal object can be viewed as a collection of object versions. A collection interface should
exist to make it possible to iterate through the object versions in a flexible way. This collection
interface is also used when assigning a value to ad HRef variable (a reference to a particular version),
i.e., assigning an object version to thed HRef.

4.4.2 To Bind or not to Bind?

We have now outlined how objects could be accessed through a standard language binding. It should
be noted that the problems involved in this integration alsocan be an argumentagainstdoing this. It
is possible that only allowing access to historical versions through a temporal query language is less
error prone and more efficient than providing access throughan explicit language binding. A more
in-depth study of the language binding, and whether to have it at all, is interesting further work.

3A d Ref is a reference to an object.
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4.5 Vacuuming

When an object has been deleted in a snapshot database, it cannot be accessed later. Usually, the space
occupied by the object will be overwritten by new data after it has been deleted. Temporal databases,
however, follow a non-deletion strategy, where logically deleted data are kept in the database. Even
though storage cost is decreasing, storing an ever growing database can still be too costly in many
application areas. A large database can also slow down the speed of the database system by increasing
the height of index trees (even though this can be avoided with multi-level indexes, at the cost of a
more complex system). As a consequence, it is desirable to beable to physically delete data that
has been logically deleted, and delete non-current versions of data that is not deleted. This is called
vacuuming. Note that the termvacuuminghas also been used for the migration of historical data from
secondary storage to cheaper tertiary storage. In this thesis, we will use the term forphysical deletion
only.

4.6 Implementation Issues

We will do a more detailed discussion of some implementationissues in temporal DBMS later in this
thesis. In this section, we will restrict the discussion to an overview of some of the most important
work in the area.

4.6.1 Partitioned Storage

Storage of data in a temporal DBMS is not very different from storage of data in a traditional DBMS.
However, because current data tend to be more frequently accessed than historical data, data is often
partitioned into acurrent storeand ahistory store. The two stores can utilize different storage formats,
and even reside on different storage media [4]. In this way, frequently accessed data is clustered
together, stored on fast storage media, while historical versions can be stored on slower but cheaper
storage media. The total storage cost is reduced, similar tothe goal of general storage hierarchies.

4.6.2 Timestamp Representation

Timestamps can be viewed from two levels: logical and physical level. The logical level is the user’s
view of the values, for example from a query language. At the logical level, the timestamp may look
like “Dec 4 22:14:44 1998”. It can also look like “1998/12/04”, in a different format, at a lower
granularity. However, physically, the timestamp is usually represented differently. We have several
goals we want to achieve:

1. High precision. For many applications, precision down today or hour is enough, while other
applications need finer granularity. This is especially important for transaction-time databases,
where we want objects from different transactions to have unique timestamps.

2. Large range. In the case of valid time, a timestamp should ideally be capable of representing
all points in time, from the Big Bang to Armageddon. However,in a transaction-time database,
we can accept a smaller range, from the day the system is first used, and to “some time in the
future”.

3. Low storage cost. To keep storage costs down, the number ofbytes used to represent a time-
stamp should be as small as possible, given the other constraints.
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4. Low processing cost, for example when creating timestamps, comparing timestamps (including
ordering of timestamps), and translating between different calendar representations.

As can be observed, high precision and large ranges conflict with low storage cost. Given a certain
storage cost, high precision and large ranges are conflicting goals. Low storage cost conflicts with low
processing cost, because efficient storage of a timestamp will often imply transformation before and
after processing.

Alternative timestamp representations can be classified as:

1. One-field alternative, often used in operating systems. In Unix, 32 bits are used to represent the
seconds since its origin. This format is very space efficient, and results in low processing cost.
However, the range, 136 years, is too small for a general purpose valid time temporal database.
Although the range is large enough for a transaction-time temporal database, one should keep
in mind that some of the data stored in temporal databases will be used some time far in the
future, so that one should consider a larger range. In many applications, the precision (seconds)
is too small as well. However, both precision and range can easily be increased by increasing
the number of bits in the timestamp.

2. Multi-field timestamps, as used to represent time in many commercial RDBMS. In this case,
there are separate fields in the timestamp for year, month, day etc. In each field, the actual
year/month/day can be stored by using packed decimals or a string representation.

In a study of this issue, Dyreson and Snodgrass [60, 191], proposed a new timestamp format to solve
the problems above. In their timestamp format, special values designate special times asnow and
forever. They also made the observation that users have a telescoping view of time, times close tonow
should be represented with finer granularity than times further in the past or in the future. They can be
represented with an extended range and coarser granularity. The proposed timestamp representation
can have different lengths: 32, 64, and 96 bits.

4.6.3 Indexing Temporal Databases

To support efficient retrieval of temporal data, indexing isnecessary. Much research has been done in
this area, and a comprehensive survey of indexing time-evolving data has been done by Salzberg and
Tsotras [178]. This issue will be discussed in more detail inChapter 8.

4.6.4 Temporal Query Processing

Even though most other aspects of temporal databases now seems to be well explored areas, the
amount of publications on temporal query processing is still relatively small. One of the reasons for
this, is that much of the other work (and implementations) have used astratum approach, in which
a layer converts temporal query language statements into conventional statements executed by an
underlying DBMS [100]. Although this approach makes the introduction of temporal support into
existing DBMSs easier, we do not see it as a long-term solution, because temporal query processing
with this approach can be very costly.

Previous work on temporal query processing includes the work by Leung and Muntz [122, 123],
which was a study of query execution on a data stream with tuples with increasing timestamps. That
work was also done in the context of multiprocessor databasemachines [124]. An algorithm for
evaluation of valid-time natural join has been presented bySoo et al. in [192]. Optimization of
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partitioning in temporal joins has been described by Zurek [220]. Other important work includes
aggregation algorithms [116], a study of parallel aggregation [72], and coalescing [25].

In the context of query processing in temporal ODBMSs, we areonly aware of one paper, on
parallel query processing strategies for temporal ODBMS byHyun and Su [94].

4.7 Temporal ODBMSs

The area of temporalODBMSsis still immature, as is evident from the amount of research in this area,
summarized in theTemporal Database Bibliography, last published in 1998 [216]. The main reason
for this low research activity is probably the number of problem still unsolved in the less complex
case of temporal RDBMSs.

Most of the work in the area of temporal ODBMSs has been done indata modeling, while less
have been done on implementation issues. systems have been implemented [24]. Common for most
of these, is that they have only been tested on small amounts of data, which makes the scalability
of the systems questionable. In most of the application areas where temporal support is needed, the
amount of data will be large, and scalability is an importantissue.

In the area of temporal ODBMS, we are only aware of one prototype, POST/C++ [202]. How-
ever, the indexing technique used in POST/C++ is not scalable. Good performance is only possible
as long as the OID index fits in main memory (see Section 8.3.2 for a description of the indexing in
POST/C++). In addition, there are implementations of temporal object data models on top of tradi-
tional ODBMSs, for example TOM, built on top of O2 [194].

4.8 Summary

We have in this chapter given a short introduction to the terminology and most important issues in tem-
poral database management. For more in depth discussion of the issues, we refer to the publications
cited in this chapter.
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Chapter 5

Log-Only Database Management
Systems

Most current database systems are based on in-place updating of data combined with write-ahead
logging. In this chapter we describe the alternative log-only approach, and describe its advantages
and disadvantages. We describe the page-based and object-based alternatives, and why we consider
the object-based alternative as the most interesting. We finish the chapter with an overview of systems
that are based on log-only or related techniques.

5.1 The Log-Only Approach

In a log-only approach, data as well as metadata are written contiguously to the log. Already written
data is never modified, new versions of objects or pages are simply appended to the log. Logically,
the log is an infinite length resource, but the size of the physical storage is of course not infinite.
This problem is solved by dividing the physical storage intolarge, equal sized, physicalsegments, as
illustrated in Figure 5.1. A typical segment size will be in the order of 512 KB to 1 MB. When all
data residing in one segment is outdated or moved to another segment, the segment can be reused. In
the description in this chapter, we will assume that the log resides on disk only, but in general, the log
can also reside on tertiary storage. The log also containscheckpoint blocks, which are used to store
checkpoint information. The checkpoint blocks are stored in fixed positions in the log.

Writes are always done sequentially, normally one segment at a time. This is done by writing
data and index nodes, possibly from many transactions, in one write operation. The segment size is
a tradeoff between different, partly conflicting, goals: toimprove write efficiency, it is desirable that
the segments written are as large as possible. On the other hand, large segments can make response
time longer, because writing large segments will block for read operations, and we have to wait for
more transactions during group commit. Smaller segments reduce the blocking time for waiting read
operations, but they also result in less efficient writing, and a larger number of segments (which means
more overhead).

Because data is always written to a new place after having been updated, an index is necessary to
be able to subsequently retrieve the data. This index structure is also written to the log, interleaved with
the data. If the granularity of data is objects, an OID index (OIDX) is needed, and if the granularity
is pages, a page index is needed (in the latter case, a page identifier is part of the OID of an object,
similar to physical OIDs in traditional ODBMSs). The granularity of reading is object or pages.
When a stored object or page has to be retrieved, only the desired object or page is read, not the whole
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Figure 5.1: Disk volume structure.
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Figure 5.2: Data and index in a log-only ODBMS.

segment it is stored in.

5.1.1 Example of Log Writing

We now give an example to illustrate the log writing. In this example, the data granularity is a page,
and a page index is interleaved in the log. Which page to retrieve when an object is requested is given
from the OID of the object, which contains a page identifier.

Figure 5.2 illustrates how data pages and index nodes are interleaved in the log. On top of the
figure is the logical log, which is a sequence of pages. Pages denoted PiVj are data pages, wherei
is the page number, andj is the version number or timestamp of the page. Pages denotedIDX i are
index pages. The index pages will in general be part of an index tree, but to keep this example simple,
we assume the number of pages is low enough to be able to store all index entries on one page.

At time t0, a transaction allocates four pages, which are written to the log. After the transaction
commits, the index node IDX0 is written, so that pages can later be accessed via this index. Later, at
time t1, a new transaction modifies page number 2 (whose first versionwas denoted P2V0). The new
version of the page (page P2V1) and a new version of the index (index node IDX1) are written to the
log.
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Figure 5.3: Segment states.

As can be seen from the figure, the previous versions of pages are still stored in the log, in addition
to the current versions. The two versions of the database areillustrated in the figure, with arrows from
the respective index nodes. Index node IDX0 indexes the database as of timet0, and index node
IDX1 indexes the database as of timet1. As illustrated in this figure, only the current versions canbe
accessed from IDX1. If we want to be able to access old versions of data, we can use a multiversion
index.

Note that even we in this example write data and commit sequentially, this is not necessary in
practice. As will be described in more detail later in this thesis, data from different transactions and
committing transactions can be interleaved.

5.1.2 Log Operations

A segment can be in one of three states, as illustrated in Figure 5.3. A segment starts in aclean state,
i.e., it contains no data. The segment currently being written to, is called thecurrentsegment. When
the segment is full, we start writing into a new segment. The new segment now goes from theclean
state, tocurrent. The previous segment is nowdirty, it contains valid data (note that dirty in this
context has nothing to do with main-memory state versus diskstate, as the term is most frequently
used). Information about the status of the segments is kept in thesegment status table(SST), which
is kept in main memory during normal operation.

If system load is low, or transactions are mostly read-only,only small amounts of new data will be
created. In this case, update transactions in the commit phase, waiting for data to be written to disk,
will experience long delays if we try to fill up the segments before we write. This is not acceptable, and
can be solved by writing subsegments (also called partial segments). When writing subsegments, we
write more than one logical segment into one physical segment. For example, if the physical segment
size is 512 KB, we can instead write 4 subsegments of size 128 KB into the physical segment.

At regular times, a checkpoint operation is performed. In the checkpoint operation, we write
enough information to the log to make the current position inthe log a consistent starting point for
recovery.

Recovery in a log-only database can be performed very fast, since there is no need to redo or undo
any data. Only segments written after the last checkpoint need to be processed. At recovery time
we simply do an analysis pass from the last known checkpoint to the end of the log, where the crash
occurred.1

As data is updated or deleted, old segments can be reused. Updated an deleted data will leave

1However, as we shall see later, it can be beneficial to extend the amount of data that needs to be read at recovery time,
to increase performance under normal operation.
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behind a lot of partially filled segments, the data in these near empty segments can be collected and
moved to the current segment, thus freeing up space in the oldsegments and making the old segments
available for reuse. This process is calledcleaning. For each segment, the SST contains a live byte
counter. When data is deleted, this counter is decremented,so that we know which segments are good
candidates for cleaning.

5.2 Advantages of a Log-Only Approach

Because the log-only, no-overwrite approach, is radicallydifferent from the techniques used in current
systems, it is appropriate to describe the advantages of this approach.

Transparent Compression of Data. Objects are not written to the same physical location every
time, and as a result, there is no need to reserve space for themaximum size of the compressed object.
Even if compression ratio and the corresponding storage size change, no space is wasted.

Easier On-Line Backup. The written segments are time stamped, and with a no overwrite strategy,
it is enough to know the last time of backup to know where backup should be started now. Backup
could also be done on-line, and again, even if we stop backup when the load is high, we know where
to continue in less busy periods.

Flash Memory. Very high performance can be achieved if we use fast non-volatile memory instead
of disk. One example of such an storage technology is flash memory. Flash memory is byte readable,
and fast, but write/erase has to be done blockwise. This suits a storage strategy with no in-data
modifications.

Write-Once Memory. With write-once storage, for example optical disks, there is a need for a
no-overwrite strategy.

RAID Technology. Disk access times and bandwidth improves at a much lower ratethan main
memory, and parallel disk systems are necessary to get high performance. To benefit from RAID
technology, the write blocks have to be much larger than those used in traditional systems. In addition,
in normal systems, sequential writes are only about 3-5 times faster than random writes, while in
RAID, sequential writes can be up to 20 times faster than random writes [196]. One of the reasons
for this difference is the writing of parity blocks, which isnecessary in order to be able to do media
recovery in the case of a disk failure.

High-Bandwidth Applications. In many supercomputing applications, and more recently also in
OLAP applications, computations are done on large matrixesand arrays. To be able to do operations
on these large structures, it is often necessary to break them into chunks which can be processed
independently. It is necessary to retrieve and store these chunks efficiently. The same applies to
storage of multimedia data, for example video. Until now, only file systems have been able to offer
the desired performance. However, there is a demand for someof the services offered by database
systems in these areas: access control, concurrency control, and recovery. However, performance
close to file system performance is necessary for a DBMS to be applicable.
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Group Commit. Group commit, in addition to giving us larger writes, also gives opportunity for
more intelligent clustering of objects from different transactions.

Fast Crash Recovery. The log-only approach has similarities to shadow storage. Even though the
use of shadow storage can result in performance problems, italso has a very nice and interesting
feature: very fast crash recovery. By never updating in-place, recovery issues can be solved much
easier.

Temporal Database Management Systems.Keeping old versions comes at little extra cost in a
log-only DBMS. Given a log-only DBMS, realizing a temporal DBMS should not add much extra
cost.

Cache Coherence. Versioning/timestamping can be exploited in cache coherence protocols in client-
server environments, as is done in BOSS [119].

Nomadic Computing. Objects and segments are timestamped. This can also be utilized to maintain
consistency in client databases that are off-line part of the time. If these at regular times are connected
to a server, they can be made consistent by uploading changessince the last connect.

The advantages listed above indicate that the log-only approach is highly interesting, but it should
not come as a surprise that these advantages do not come for free. The log-only approach has similar-
ities to other no-overwrite strategies, for example the shadow page approach, and it also inherits the
nasty side of shadowing: after a while, data becomes unclustered. However, for several reasons, we
expect that this will be less of a problem with our approach:� The increased amount of main memory can to a large degree compensate for the lack of clus-

tering.� The access pattern is supposed to be more direct and navigational in an ODBMS than in a
RDBMS.� Some systems are mainly write-once systems (for example many SSDBs), and if a large batch
is loaded at a time, we can get very efficient clustering.

It is also possible torecluster the database when needed, although this can be costly with large
amounts of data. This can be done as a part of the cleaning process, which is performed asyn-
chronously. While this at first glance might look as if we haveto do twice the work to get the same
result, compared to other systems, it is not necessarily so.If you use write-ahead logging (WAL),
you also have to write the data twice, to the log as well as to the database itself. It is also important
to remember that reclustering is also necessary in traditional DBMSs. Traditional clustering works
well as long as the access pattern is static, but if the accesspattern changes, the database have to be
reclustered.

The cleaning process can also be utilized to do dynamic and adaptive clustering. With the advent
of persistent programming languages that need efficient support for garbage collection, for example
persistent Java, it is possible that the garbage collectioncan be done as a part of the cleaning process.
In this way, the effective cost of the cleaning can be reduced.
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In the case of a temporal DBMS, a kind of continuous reclustering is also needed in traditional
systems. If you want to keep previous versions of data, and still want to keep the current set clustered,
you have to move the old version before inserting the new.

5.3 Alternative Realizations

There are two alternative ways to realize a log-only ODBMS:page-based, andobject-based. The
most important difference between these two is how objects are indexed. In an object-based design,
indexing is done at object granularity, with logical objectidentifiers, while in a page-based design,
only the pages are indexed, and the page an object resides on,is hardcoded into its object identifier.

5.3.1 Page-Based Designs

In page-based designs, the log is seen as one large persistent address space. When an object is created,
it is allocated space from this address space. The pages are written to the log, similar to the example in
Figure 5.2. The objects are referenced by a persistent-memory address (a page identifier is included in
the OID), and are retrieved via the page index which is interleaved in the log. If an object is modified,
a new version of the page(s) it resides on is written back to the log.

The main advantage of the page-based approach is ease of implementation. However, it has some
of the same problems as traditional page servers:� Even if only a small part of the page is modified, the whole pagehas to be written back. If

objects are not well clustered, this will give low effectivewrite bandwidth.� With bad clustering, main-memory buffer utilization will be bad as well.� Reclustering is difficult, the indexing in a page-based design is similar to the use of physical
object identifiers in a traditional system, even though the location of the pages in a log-only
system changes, an object is bound to one page during its lifetime.� Variable sized objects are difficult to integrate into the page approach, since the space is allo-
cated when the objects are created. This makes it difficult toemploy compression.

In addition to these well known problems from traditional page servers, a page-based log-only
ODBMS also makes transaction management difficult. To avoidpage level locking, you essentially
need to have 1) an additional log to keep track of page updates, or 2) use ad-hoc techniques to solve
the problem. Both solutions are likely to hurt performance and increase complexity.

Two page-based ODBMSs are Texas [189] and Grasshopper [91].Based on the documentation
of the commercial ODBMS MATISSE [134], it is also possible that MATISSE is page-based, but this
has not been possible to verify.

5.3.2 Object-Based Designs

The alternative to a page-based design, is to index objects directly. In this case, only the object (or
a delta object) needs to be written to the log when an object ismodified. This is especially useful if
good clustering is difficult. Dynamic clustering can be employed to give a good clustering. This is
possible because clustering can change with time, according to the access pattern. It is also possible
to get all of the other benefits of log-only systems, as described previously in this chapter.
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The most important disadvantage with the object-based approach, is that more index updates might
be needed, because individual objects are indexed, and not whole pages. We will later in this thesis
develop techniques to minimize this disadvantage.

Based on the advantages and possibilities of an object-based design, we see it as the most interest-
ing approach, and Vagabond, which will be described in detail in the rest of this thesis, is object-based.
In the rest of this thesis, we writelog-onlyas short for a log-only object-based design.

5.4 Systems Based on Log-Only Related Techniques

We will now present systems that employs log-only related techniques: POSTGRES, log-structured
file systems (LFS), DBMS based on LFS, and the log-structuredhistory data access method (LHAM).
We also present other work, based on the ideas presented in these sections.

5.4.1 POSTGRES

No-overwrite strategies have a long history, for example inshadow-paging recovery schemes, like
the one used in System R [5]. The best known log-only DBMS, andprobably the first as well, was
POSTGRES [195]. POSTGRES was anextended relational database system, which actually can be
said to employ a no-log strategy rather than log-only.

Data in POSTGRES were stored in relations, which were storedin files. Pages were allocated or
deallocated for a file on demand, and were linked together, asillustrated in Figure 5.4.

As illustrated in Figure 5.5, each page in POSTGRES had ananchor table, used to retrieve records
stored on a page. When a record was created, space was allocated for the record. When records were
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updated, they were not updated in-place on the page, rather,a delta record was created, which recorded
the changes from the previous version (illustrated in Figure 5.6). When a record was to be read, the
whole chain from the first record had to be traversed and processed. POSTGRES was optimized for
small records,2 and delta records should be on the same page as the initial record.

Although POSTGRES introduced many novel ideas, the storagestrategies did not gain much
success at that time. The main reasons for this, were some serious problems resulting from the way
records were stored:� Read operations could be very expensive, because of the delta chains.� POSTGRES used aforce bufferpolicy. At commit, all data modified by the transaction had to

be written, giving a very high commit cost.� Even though POSTGRES could be used as a basis for a temporal DBMS, the use of append-only
linked lists for each record was too inflexible and inefficient, an additional index was needed in
most cases, increasing the overhead.� In common with other no-overwrite strategies, POSTGRES also held the risk of declustering
relations.

5.4.2 Log-Structured File Systems

The no-overwrite idea was borrowed from POSTGRES and used inlog-structured file systems (LFS),
first presented by Rosenblum and Ousterhout [177] in the Sprite LFS, and later refined by Seltzer et al.
in BSD-LFS [185]. LFS has also been the basis for other systems, for example Spiralog [102, 212].

In an LFS, file and directory information is interleaved in a log. File identifying information is
kept in inodes, similarly to Unix, and an inode map is used to locate the position of an inode in the log.
It is assumed that the active portions of the inode maps can bekept in main memory. The granularity
of writing (and indexing) in LFS is pages.

LFS has also been shown to be able to benefit from the advantages listed earlier in this chap-
ter. It has been shown to be very well suited for tertiary storage management [69, 117], in on-line
backup systems [78], and on-line data compression [36]. Implementing transactional support in LFS
is described in several papers by Seltzer et.al. [182, 184].

The most important bottleneck in an LFS is cleaning, especially under heavy load, or when there is
little free space on disk. This has been studied in several LFS performance improvement studies [19,
144]. This work has also resulted in improving the cleaning techniques and cleaning heuristics, and
on self-tuning.

2A large object interface was added later.



www.manaraa.com

5.4. SYSTEMS BASED ON LOG-ONLY RELATED TECHNIQUES 53

Storage system

Main Memory

0C

Disk

1C

C2

Tertiary Storage

C3

Figure 5.7: LSM with four components.

5.4.3 Log-Structured History Data Access Method

The log-structured history data access method(LHAM) [143, 170] is based on thelog-structured
merge-tree(LSM-Tree) [169].

A LSM is based on a hierarchy of index components, where the index component at each level
has a larger size than the index component at the previous level in the hierarchy. We denote an index
componentCi. ComponentCi indexes a subset of componentCi+1, i.e., componentCi is (much)
smaller thanCi+1. ComponentC0 is in main memory,3 C1 : : : Ci are typically on disk and tertiary
storage (see Figure 5.7).

Updates are only done to componentC0. Entries fromC0 not yet migrated to componentC1 are
merged into componentC1 in batch, as a background process. In general, the same is thecase for all
the components in the hierarchy, entries fromCi not yet migrated to componentCi+1 are merged into
componentCi+1 as a background process.

The most frequently updated entries will typically be in thelower levels of the hierarchy, because
each update of an entry will result in an insertion intoC0.

As a result of the way updates are merged into the higher numbered trees, entries in componentCi are always as least as recent as entries in componentCi+1. When we search for an entry, we start
the search in componentC0. If we do not find the searched entry there, we continue with componentC1, componentC2 and so on, until we find the entry, or have reached the last component. As long as
we do the search as described, we are also sure to get the most recent version, even though the higher
numbered components might contain outdated values.

Inserts and updates are only done to the first level index, andthe contents of one level in the index
are asynchronously migrated to the next level. As a result, all data inserted or modified during a
certain time period will be in the same level. Search for datawritten at a certain time is efficient, but
searching for the most recent version of certain data can be costly.

The main advantage of LHAM is support for high insertion rates, while also being competitive in
terms of performance.

5.4.4 Other Related Work

Most no-undo/no-redo recovery approaches share some of thecharacteristics of the log-only approach.
We have already mentioned the shadow-paging algorithm, used in System R. Other techniques are
differential files(also called deferred update and side files), and thedatabase cache. In the differential
file approach, updates are done to a new and previously unusedlocation, in a side file [77]. At regular

3Logging has to be used to be able to recover from main memory failure.
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intervals, the contents from the side file are copied back to the original file. The database cache [63]
uses a similar approach, but by assuming large main memory buffers, new algorithms can be used to
avoid some of the problems of the shadow page and side file approaches.

Other relevant work includes approaches to deferred update, for example the BOSS approach [119].
BOSS employs WAL, but updates to the database itself can be deferred. The difference between de-
ferred updates as used in BOSS and a log-only approach is thatthe log-only approach takes it to the
extreme, there isonly the log. The advantage with the log-only approach is that theupdates to the
database are avoided.

5.5 Summary

This chapter outlined the basic principles behind a log-only ODBMS based on LFS techniques. As
described in the overview of other systems based on log-onlytechniques, the log-only approach is not
new in itself, and even log-only systems can be said to be based on earlier techniques, for example
shadow-paging.

The summary of advantages of a log-only systems should serveas a motivation to explore this
strategy further, but it should be emphasized that whether asystem might be able to achieve high
performance has to be verified by analytical modeling or simulations. In Chapter 14 we will use
analytical modeling to study the possible gain from using a log-only approach. However, real evidence
can only be gained from an implementation of the approach, used in real applications. This is left as
further work.
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Chapter 6

An Overview of Vagabond

In this section, we briefly describe the architecture of the Vagabond temporal ODBMS, which is used
as the context for the following chapters. The server architecture is described, and we give a summary
of techniques that can be used to reduce the read costs in sucha system. These techniques will be
described in more detail in the rest of this thesis. We describe storage objects, and we describe how
Vagabond can be incorporated into a parallel and distributed architecture. We emphasize that this is
not the description of an implemented system, only a framework for the design presented in the rest
of this thesis.

6.1 Server Architecture

Similar to the Shore ODBMS [39], we also use a peer-to-peer architecture. All application programs
in the system are connected to one server, running on the samemachine as the application. This
server is the gateway to the DBMS, including remote servers (cf. the multiple client/multiple server
architecture in Section 3.4). Not all servers have data stored locally. If all servers did, including those
running on office workstations, that would make it impossible to achieve high availability. However,
even if no data is stored locally, a server must be running on that node to make it possible for the
application program to access the DBMS. One advantage of this approach is that it makes it possible
for several clients running on the same machine to utilize a common server-side cache. On the client,
client-side caching will be employed as well.

6.1.1 Client/Server Communication

A Vagabond server is anobject server(see Section 3.6.1). The architecture of the server is illustrated
in Figure 6.1. A client normally operates against the Vagabond API, a client-side stub which provides
the mechanisms to communicate with the server. The communication with the server is done via the
messenger.

6.1.2 Server-Side Operation

The server is multithreaded, and all subservers run as separate threads. There is also one thread for
each transaction. To reduce thread creation costs, we use recyclable threads. Recycling of threads is
done by having a fixed (but expandable) number of threads of a particular type. These threads are
created when the server is started. When idle, they are waiting in anthread pool. When a task is to
be started, it can be allocated one of the idle threads. When the thread has finished its task, the thread
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Figure 6.1: The Vagabond server.

is returned to the thread pool. This saves the overhead of creating threads, and the cleanup cost after
thread termination. Even though the use of threads incurs extra cost compared with an event driven
system, for example more locking overhead, thread-administration, and thread-switching overhead,
multithreading makes it easier to exploit multiprocessor computers.

Each client that connects to the server starts the session byconnecting to theSubserver manager,
which allocates either anODBMS session subserverthread or anapplication subserverthread to the
client. The allocated thread operates in the server addressspace on behalf of the client. Commands
and data are communicated through themessenger.

6.1.3 Subservers and Server Extensibility

All communication between clients and the storage manager is done via subservers. We have three
classes of subservers:� Subserver manager.� ODBMS session subservers.� Application subserver.

The subserver manager is only used when a session is started,to allocate the appropriate subserver, as
described above.

ODBMS session subservers and application subservers access the storage manager (SM) through
the SM API. Normally, ODBMS session subservers are used. Application subservers are extensions
to the system, making it easy to extend Vagabond. This is similar to features found in other systems,
for example the Value Added Server concept in Shore, and DataBlades/Cartridges in commercial
systems. However, for such a concept to be really beneficial,the ODBMS has to be object shipping
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rather than page shipping, so that the system is able to filterout objects and do operations on the
objects, something which is impossible or difficult on page server systems.

One interesting point here, is that the SM API is a superset ofthe Vagabond API, the client
interface stub. This feature makes it easier to implement and test subservers as clients, before they
are added to the server. As subservers, they can communicatewith clients through a messenger, as
illustrated in Figure 6.1.

6.1.4 Storage Manager

The storage manager is responsible for permanent storage ofobjects. Its most important operations
include transaction management, secondary and tertiary storage management, and indexing.

Buffering data in main memory is done to reduce the amount of data needed to be transfered
between main memory and disk, and between individual servers. Important buffers include the object
buffer, index node buffer, and object descriptor buffer (anobject descriptor is an entry in the OIDX, see
Section 3.1.2, and will be described in more detail in Section 8.1.2). These buffers can be dynamically
resized, to get optimal performance with changing access patterns. The cost functions derived later in
this thesis, and the papers in the appendixes, can aid in dynamically deciding optimal buffer sizes.

6.1.5 Permanent Storage

All data in a Vagabond server is stored in a logical log, whichis stored in one logicaldata volume. A
data volume consists of one or more storage devices. A storage device can be a secondary as well as
a tertiary storage device. Typical examples of storage devices are:� A raw disk partition (on magnetic disk).� A fixed size (but extendible) file on the native file system simulating a disk partition. Running

our own system on top of the native file system gives an extra level of indirection. However,
allocating disk space on an (almost) empty disk will on most modern file systems give a mostly
sequentially allocated file. This is done by creating a disk file, and writing as many blocks to it
as the size specified. The file can be extended or shrunk by any integral number of segments.� Optical disk.� Tape.� Flash memory.

Devices can be dynamically added to or removed from a data volume. Adding a device basically
increases the number of available segments in the volume, while removing a device is done by first
moving all data currently residing on that device to anotherdevice.

Even if disk space is cheap, it is still necessary for some applications to have data on tertiary
storage. This can be done transparently in Vagabond. Tertiary storage is most often removable media,
for example optical disk or tape, which can be used in disk andtape robots.

One of the devices in the data volume is called theroot device. On this device, the most important
volume information is stored, and it also contains the checkpoint block. The checkpoint blocks should
be on a rewritable medium, so the root device will typically be a magnetic disk.
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6.2 Objects in Vagabond

In Vagabond, all objects smaller than a certain threshold are written as one contiguous object. They are
not segmented into pages as is done in other systems. Objectslarger than this threshold are segmented
into subobjects, and alarge-object indexis maintained for each of these large objects (this is done
transparently for the user/application). There are several reasons for doing it this way:� Writing one very large object should not block all other transactions during that time.� A segmented object is useful later, when only parts of the object is to be read or modified.� Parts of the object can reside on different physical devices, even on different levels in the storage

hierarchy.

The value of the threshold can be set independently for different object classes. This is very useful,
because different object classes can have different objectretrieval characteristics. Typical examples
are a video and an index. When playing a video, you want to retrieve one large segment of the video
each time. On the other hand, when searching an index tree, you only want to retrieve single nodes,
which usually have a small size. Similar for both video and index retrieval is that you only want a part
of the object. For other objects, the whole object will be needed at once. One example is images. In
order to be able to display the image, the whole object is needed. In that case, storing the image as
one contiguous object will be advantageous.

Every object version in Vagabond has an associated object descriptor (OD), which contains the
OID, physical location, timestamp, and other administrative information. In addition, every subobject
has an associated subobject descriptor (SOD). ODs and SODs will be described in more detail in
Section 8.1.2 and Section 8.5.2.

6.2.1 Typed Objects

It is not strictly necessary for the storage system to know the type of an object. Actually, in most
systems, an object is simply a chunk of bytes from the storagemanager’s point of view, and page
servers do not even have to know about objects, pages are all they care about. However, storing type
information in the system can improve efficiency and performance considerably:� It is useful for type checking.� It makes it easier to employ hierarchical concurrency control techniques.� If the server knows the attributes and attribute sizes of an object, it is easier to support vertical

fragmentation in a parallel or distributed system. The alternative is that the application gives
“partitioning hints”, for example where in an untyped object it is possible to partition it. Some
minimal information is also needed for reclustering and garbage collection (at least one needs
to know where the pointers are).� Typed objects are also necessary if the server shall be able to do some kind of server-side
filtering or method execution.

In Vagabond, meta information for an object class or type is stored in the database as an object, called
a class descriptor object(CDO). CDOs can be versioned as other objects, which simplifies support
for class version management.
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Figure 6.2: Class descriptor (CDO).

Every object in the system belongs to a “class” (not only a programming language class, for
example, it can also be an index class) as described in a CDO. ACDO is uniquely identified by a
class identifier(CID), and the CID is used in object descriptors (ODs) to identify the class an object
belongs to. The structure and contents of the CID are discussed further in Section 8.1.2.

The structure of a class descriptors object (CDO) is summarized in Figure 6.2. In the case of
objects to be handled by special object handlers (see Section 6.2.4), thespecial object typeidentifies
which special object handler should be used. Thereserved fieldis reserved for the special object
handler, and can be used to identify index variants, for example different key types in the case of an
index. TheNavigDesc size is the size of thenavigational descriptor. A navigational descriptor
exists in some index objects, for example B-trees, where it is a(key,pointer) tuple. The use of
theNavigDescwill be further explained in Section 8.5.2 and Chapter 10.

The large-object thresholdcan be set to different values for different object classes,making sub-
object partitioning very flexible. Thesubobject sizeis the size of the subobjects in a large object (this
can be different for different classes).

Thevacuuming ageis used for lazy vacuuming (see Section 12.6). If the timestamp of the object
is older than the vacuuming age, the object can be removed. The default value of this attribute is a
null value, i.e., the objects in this class can not be vacuumed.

The CDOs can hold other associated meta information as well,typically attribute and value offset
information. This is also the place to store which attributes should be used to create the object signa-
ture if that is enabled for the particular class (hash-basedsignatures can be used to reduce the number
of objects that need to be retrieved from disk, this will be described in more detail in Section 7.1).
Whether to maintain signatures or not, is defined by themaintain signaturesfield. The size of the
signature is stored insignature size. Note that using asignature sizeof zero to imply that no signature
should be maintained, in stead of using amaintain signaturesfield, is not possible. The reason is
that we want to make it possible to later disable signature maintenance for a class, without changing
the size of the ODs, which include the signature. If this functionality was implemented by setting
the signature size to zero, we would have to reorganize the relevant part of the OIDX to reflect the
changed size of the ODs.

The CDOs are stored in the log as objects. When a new class is created, the class descriptor object
is stored on all participating servers (full replication).The number of classes is in general small, so
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the space used for this information will not represent a problem. Additionally, the information in a
CDO will be frequently used, and it is therefore beneficial tohave this resident at all servers. Creation
of classes is an infrequent operation, compared to object creations, and the replication of CDOs will
not represent a performance problem. It is not likely that anapplication needs real time response to
class creations.

6.2.2 Temporal Aspects

Our storage structure is intended to be suited as a basis for atemporal DBMS. We maintain the
temporal information in the index, which makes retrieval efficient even without additional temporal
indexes.

6.2.3 Isochronous Retrieval

Some applications, for example video servers, do not want all of the objects delivered at once. Rather,
they want part of it delivered at an appropriate rate,isochronous retrieval. One possible strategy
to solve this is two queues in the I/O system. One for “normal”data, and one for high-priority
audio/video data.

6.2.4 Special Objects

A large object can be viewed as an array of bytes, and retrieval of part of the object is done by
retrieving a certain byte range of the object. This is not flexible enough for some of the structures
that are stored as large objects, for example indexes. Thesestructures are stored as large objects,
but the subobject index has additional information to support more complex indexes. They can also
have different concurrency control and recovery characteristics. These objects, which we callspecial
objects, are handled byspecial object handlers, which will be treated in more detail in Chapter 10.

6.2.5 Examples of Special Objects

Class descriptor objects, persistent roots, collections,index structures and spatial data structures are
also stored as ordinary data objects. This has the advantageof making them an integral part of the
object system.

Collections

A collection is a collection of objects, for examples a set, bag, array or list,1 with supporting methods
for inserting, removing, and testing for the existence of a certain element. It also supports the use of
an iterator to access the elements of a collection.

Secondary Indexes

To make an ODBMS efficient, we need secondary indexes in addition to the OIDX. One-dimensional
as well as multi-dimensional indexes, which can be suitablefor temporal queries as well as for spatial
data, should be supported.

In Vagabond, indexes are also supposed to be stored as objects. An index will often be a large
object. In many systems, all indexes have the same index node(block) size. In Vagabond, this can

1Collections are in some literature also calledcontainers.



www.manaraa.com

6.3. READ AND WRITE EFFICIENCY ISSUES 63

be tailored, so that different indexes, for different object classes, can have different index node sizes,
depending on expected and actual access patterns.

To be able to use this system as a basis for a GIS, it is necessary to have support for spatial data
structures. Only very recently have commercial DBMS with spatial support emerged, some with the
data structure implemented in BLOBs, other with more integrated extensions, such as Informix Uni-
versal Server’s geodetic DataBlade module, DB2’s Spatial Extender, and Oracle 8i/Spatial Cartridge.

Most ODBMS vendors do not have the infrastructure or the architecture necessary to support
scalable spatial data management, and a client-side index solution is necessary. One example of this
is ObjectStore.

Persistent Roots

To be able to access the objects later, we need some handles into the database. This is typically done
by the use ofpersistent roots. A persistent root is anamed object, i.e., a tuple consisting of a name (a
string), and an OID. The persistent roots are stored in a persistent root object, which is an object with
a predefined OID. The persistent root object itself is an index.

Multidimensional Arrays

The storage scheme we have described here is particularly applicable to arrays, which are heavily
used in scientific computing. Subarrays are stored as contiguous chunks in the segments, which will
give very good performance, even for read-only transactions.

6.3 Read and Write Efficiency Issues

The system is write-optimized, and as a result, object retrieval and index lookup can become a serious
bottleneck. We employ some techniques to reduce the number and size of read operations. These
techniques can improve performance considerably, with none or marginal write penalties:� Careful layout of objects.� Hash-based signatures.� Clustered index.� Object compression.

The last one, object compression, will also improve write efficiency, as it reduces the amount of data
that needs to be written to disk. In addition to the techniques listed above, we also employ writing of
delta objects to further reduce the amount of data needed to be written to disk (this technique reduces
the write cost, but increases read cost), and a number of index optimizations as will be discussed in
Chapter 8 and Chapter 9.

6.3.1 Careful Layout of Objects

Several strategies are used to store objects on disk in a way that reduces read cost. One important
strategy is to try to store related objects close to each other when objects are stored on disk. Because
we employ a no-overwrite strategy, heuristics can be used toreorder objects in segments that are to be
written to disk, and during cleaning of segments.
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Another possible strategy is to use heuristics to arrange objects in a segment so that they do not
span more disk blocks than necessary (boundary alignment and reordering). In this way, a minimal
number of disk blocks needs to be read when data is retrieved from disk.

6.3.2 Signatures

We employ a technique similar to signature files to reduce thenumber of objects that needs to be
retrieved. This can be done with a very small extra cost in Vagabond. This is described in detail in
Section 7.1.

6.3.3 Clustered Index

The OIDX is organized in a way that clusters OIDX entries for object belonging to a physical container
(a collection of related objects, to be described in more detail in Section 8.1.1). A physical container
can for example be used to store all objects from a class (and implicitly maintaining class extents),
or all objects in a collection. This can makes set-based queries more efficient. If using signatures as
well, the actual number of retrieved objects can in many queries be very low, as we in this case only
have to scan the relevant part of the index and the objects with matching signatures.

6.3.4 Object Compression

To further reduce storage space, and disk bandwidth, objects can be compressed before they are writ-
ten. This is described in Section 7.2. With a log-only approach, objects are written to a new location
every time, so that we only use as much space as the size of the current version that is written.

6.3.5 Delta Objects

Often, only a small part of an object is changed when a new version is created. In this case, much can
be gained if only the changes are written. This is especiallythe case if an object is a write hot spot
object. An object that only contains the changes from the last version of the object, is called adelta
object. Unlike traditional systems, that only use delta objects toreduce the log writing, a delta object
in a log-only database system can be an object version on its own, i.e., the complete version will not
necessarily be written.

The delta object itself can be made at a low cost, for example by using the following algorithm:

1. Do a bitwise XOR on the new and the old version of the object.The resulting bit string will
now have 1’s only in positions where there is difference between the old and new version.

2. The resulting bit string can be run-length encoded, and the resulting delta object will be very
small if there has been only small changes between the two versions.

This algorithm is most beneficial when the objects have the same object length and fixed size at-
tributes. The algorithm can easily be extended and improved, for example by only considering updated
attributes.

In general, generating and writing a delta object is only relevant if the previous version is already
in memory. This is usually the case. If not, an inefficient installation read of the previous version
would be needed to be able to generate the delta object.

It is not always beneficial to write delta objects in the case of large objects. Many large objects
are relatively static objects, and when updates are done, large parts of the affected subobjects (a large
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Figure 6.3: Vagabond system architecture.

object is physically partitioned into subobjects) are modified. Other large objects, for example index
structures, are usually more dynamic, and updates only affect a small part of one subobject. For such
objects, writing delta objects is beneficial.

The disadvantage of writing only a delta object is, of course, that previous versions have to be
retrieved to reconstruct an object at read time. This problem can be reduced by writing the complete
version of an object when an object is to be replaced in the buffer due to buffer replacement policy
(this is done in addition to writing delta objects, i.e., if an object has been updated several times before
it is discarded from the buffer, several delta objects mighthave been written). In this way, reading can
be done efficiently later (note that because of the log-only strategy, this writing is relatively cheap).
Reading the chain of objects is only needed if the DBMS has crashed before a non-delta object has
been written. This strategy is most beneficial for non-temporal objects. In the case of temporal objects,
we also need to reconstruct previous versions, and not only the most recent version. The described
strategy does not solve that problem, but the problem can be reduced by writing complete versions at
regular times, for example a full object version for every n’th delta version.

6.4 Parallelism and Distribution in Vagabond

The Vagabond architecture is a system designed for high performance, and one strategy to achieve
this, is to base the design on the use of parallel servers. Objects are declustered over a set of servers,
which we call aserver group. The declustering is done according to some declustering strategy, this
is further discussed in Section 11. The servers in a server group can cooperate on the same task, and
in this way, it is possible to get a data bandwidth close to theaggregate bandwidth of the cooperating
servers. To benefit from the use of a parallel server groups, it is supposed that the servers in one server
group are connected by some kind of high speed communication.
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The demand for support ofdistributed databasesis increasing, and to satisfy this, we use a hybrid
solution: a distributed system, with server groups(Figure 6.3). In this way, objects are clustered on
server groups based on locality as is common in traditional distributed ODBMSs, but one server group
can contain more than one computer (a kind of “super server”).

6.5 Summary

This chapter described the overall architecture of the Vagabond ODBMS, and the main features. The
rest of this thesis will concentrate onhow to make a system that can deliver support for these fea-
tures. We will identify potential bottlenecks, and describe how the impact of these bottlenecks can be
reduced.
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Reducing the Data Transfer Volume

In this chapter we describe two techniques that can be used toreduce the amount of data transfer
between memory and disk as well as between different servers: signatures and data compression. The
techniques are well-known, but previously, only limited success has been achieved from using these
techniques. However, some of the factors that previously have reduced their practical application are
not present in a log-only system, making the gain from using these techniques larger in a log-only
system than in a system based on in-place updating.

7.1 Signatures

A signature1 is a bit string, which is generated by applying some hash function on some or all of the
attributes of an object. By applying this hash function, we get a signature ofF bits, withm � F bits
set to 1. If we denote the attributes of an object asA1; A2; : : : ; An, the signature of objecti is:si = Sh(Aj ; : : : ; Ak)
whereSh is a hash value generating function, andAj ; : : : Ak are some or all of the attributes of the
object (not necessarily includingall of Aj ; : : : ; Ak, Sh does not necessarily use all its arguments).
Similar to hashing in general, two objects with the same signature may or may not have the same
(shallow) value,but objects with different signatures are guaranteed to differ. The size of the signature
is usually much smaller than the object itself, and it has traditionally been stored separately from the
object, in a signature file.

When searching for objects that match a particular value, itis possible to decide from the signature
of an object whether the object is a possible match. By first checking the signatures when doing a
perfect-match query, the number of objects that has to be retrieved can be reduced. This can consid-
erably reduce the total retrieval cost, because the size of the signature file is smaller than the total size
of the objects involved in the query.

A typical example of the use of signatures is a queryQ to find all objects in a set where the
attributes match a certain number of values:Aj = vj; : : : ; Ak = vk
This can be done by calculating the query signaturesq of the query:

1Note that the termsignatureis also used in other contexts, e.g., function signatures and implementation signatures.
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sq = Sh(Aj = vj ; : : : ; Ak = vk)
The query signaturesq is then compared to all the signaturessi in the signature file in order to find
possible matching objects. A possible matching object, adrop, is an object whose signaturesi is equal
to sq (in the case of signatures generated by superimposition, which will be discussed below, a drop is
a signature where all bit positions set to 1 in the query signature are set to 1 in the object’s signature).
The drops form a set of candidate objects. An object can have amatching signature even if it does
not match the values searched for, so all candidate objects have to be retrieved and matched against
the value set that is searched for. The candidate objects that do not match, i.e., objects with the same
signature as the query signature, but not matching the query, are calledfalse drops.

Signature files have previously been shown to be an alternative to indexing, especially in the con-
text of text retrieval [15, 66]. They can also be used in general query processing, although this is still
an immature research area. The main drawback of signature files, is that signature file maintenance
can be relatively costly; every time the contents of an object change, the signature file has to be up-
dated as well. To be beneficial, a high read to write ratio is necessary. In addition, high selectivity is
needed at query time to make it beneficial to read the signature file in addition to the candidate objects.

We will now describe in more detail how signatures are generated, signature storage alternatives,
and how signatures can be used in an ODBMS without requiring ahigh read to write ratio.

7.1.1 Signature Generation

The methods used for generating the signature depends on theintended use of the signature. We will
now discuss some relevant methods.

Whole Object Signature

In this case, we generate a hash value from the whole object. This value can later be used in a perfect-
match search that includes all attributes of the object. This method is only useful for a limited set of
queries, where all the attributes of the object are involvedin the perfect-match search.

One/Multi-Attribute Signatures

A more useful method is to computer the hash value of only one attribute of the object. This can be
used for perfect-match search on a specific attribute. Often, a query is on perfect match of a subset of
the attributes, similar to the example above. If such queries are expected to be frequent, it is possible to
generate the signature from these attributes, again only looking at the subset of attributes as a sequence
of bits. This method can be used as a filtering technique in more complex queries, where the results
from this filtering can be applied to the rest of the query predicate.

The one/multi-attribute signature method is not very flexible, as it can only be used for queries
on the exact set of attributes used to generate the signature. In the case of small sized attributes in a
traditional system, an index would in general be more suitable. Its search performance will be better,
and it supports range queries. In the case of large attributes, it is possible to use the signature instead
of the whole attribute in the index. Using one/multi-attribute signatures when these signatures can be
embedded into the OIDX, can still prove to be beneficial (see Appendix F).
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Superimposed Coding Methods

The real power of signatures comes when thesuperimposed codingtechnique is used. When this
techniques is employed, we get a signature that can be used for different perfect-match queries, where
the different queries involve different sets of attributes.

When superimposed coding is used, we first compute a separateattribute signatureSh(Ai) for
each attribute in the object. The object signature itself isgenerated by performing a bitwise OR on
each attribute signature. For example, for an object with 3 attributes, the object signature is calculated
as: si = Sh(A0) ORSh(A1) ORSh(A2)
This results in a signature that can be very flexible in use, wecan do a perfect-match search on
any subset of attributes. When comparing a search signaturewith object signatures generated by
superimposed coding, an object is a drop if all bit positionsset to 1 in the query signature are set to
1 in the object’s signature. It is also possible that other bit positions in the object’s signature are set
to 1, but that is not relevant for the actual query. The other bits set to 1 have been set as a result from
attributes not part of the query.

Superimposed coding can also be used on set-valued attributes (a set-valued attribute is an attribute
that itself is a set). In this case, a signature is generated for each member of the set. These signatures
are OR-ed together to generated the attribute signature [96, 114]. By using this technique, queries
of the typeis-subset, has-subset, has-intersectionand is-equal, can be answered efficiently, in many
cases with less cost than alternative methods, for example using nested indexes.2

7.1.2 Signature Storage

Traditionally, the signatures have been stored in separatefiles, outside the indexes and objects them-
selves. A signature file contains the signaturessi for all objectsi in the relevant set. The size of a
signature file is in general much smaller than the size of the relation/set of objects that the signatures
were generated from, and a scan of the signature file is much less costly than a scan of the whole
relation/set of objects. The most well-know storage structures for signatures areSequential Signa-
ture Files(SSF) andBit-Sliced Signature Files(BSSF), which are most suitable for relatively static
data [66]. To better support inserts, deletes, and updates,several dynamic signature file methods have
been proposed, based on multi-way trees and hash files.

Sequential Signature Files

In the simplest signature-file organization, SSF, the signatures are stored sequentially in a file. A
separatepointer file is used to provide the mapping between the signatures and theobjects. In an
ODBMS, this pointer file will typically be a file with OIDs, onefor each signature. During each
search for perfect match, the whole signature file has to be read. When an object is updated, one entry
in the signature file needs to be updated.

Bit-Sliced Signature Files

With BSSF, each bit of the signature is stored in a separate file, so that with a signature sizeF , the
signatures are distributed overF files, instead of one file as in the SSF approach. This is especially

2A nested index is a B-tree variant where the leaf node entriesare composed of a key value and the OIDs of the objects
that have this key value in the indexed attribute [14].
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useful if we have large signatures. In this case, we only haveto search the files corresponding to the
bit fields where the query signature has a “1”. This can reducethe search time considerably. However,
each update implies updating up toF files, which is expensive. So, even if retrieval cost has been
shown to be much smaller for BSSF, the update cost is much higher. Thus, BSSF based approaches
are most appropriate for relatively static data.

Several improvements of the BSSF have been proposed, most ofthem imply some vertical or
horizontal decomposition [87, 113, 172]. Variants that usesignature compression and multi-level
signatures also exist.

7.1.3 Signatures for Fast Text Access.

Fast text access has been the main application of signatures, and most of the publications on signatures
have been related to text access methods [15, 65, 66, 120, 206, 217]. In this case, the signature is used
to avoid full text scanning of each document, for example in asearch for certain words occurring in a
particular document.

Documents are first divided into logical blocks, which are pieces of text that contain a constant
number of distinct words (if most documents are small and have approximately the same size, this
step is not strictly necessary). A separate signature is generated for each of these logical blocks, i.e,
there is in general more than one signature for each document. In order to generate a block signature,
a word signature is generated for each word in the block, and the block signature is generated by
OR’ing these word signatures.

When searching for documents containing one or more particular words, the signature file is read
first, and each block signature is compared with the query signature (the signature generated from
the query words). This gives us a set of candidate documents (or candidate blocks), where the actual
search words might occur. These documents have to be retrieved and searched.

Example

To illustrate the advantage of using signatures for fast text access, consider a collection of 1024 techni-
cal documents. The average document has a size of 64 KB, and contains 600 distinct words. Without
signatures (or an index), all documents have to be retrievedif we want to find which documents
contain one or more specific words. The total data volume to read will be1024 � 64 KB= 64 MB.

The data volume to be read can be reduced if signatures are employed. In this example, assume a
signature size ofF = 4096 bits, and that these are stored in an SSF. We do not divide the documents
into logical blocks. The size of the signature file will beS = 1024F8 = 1024 � 512 = 512 KB.3

When searching for documents containing one or several words, we first read the signature file.
For all documents with matching signature, we have to read the document. The probability that a
retrieved document does not contain the actual word, is equal to the false drop probability [66]:Fd = (12)m;wherem = F ln 2D
In the case of a text document,D is the number of distinct words in a block. In this example, onlyFd = 0:037, i.e., 3.7% of the retrieved documents, will be false drops.Thus, instead of reading
64 MB, we can satisfy the query by only reading the signature file and the candidate documents. The
number of documents to retrieve depends on the selectivity of the query. If we search for a very

3If a document identifier is included in the signature file, itssize will be slightly larger than this.
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common word, most of the documents have to be retrieved, but if we search for a combination of
words, the number of documents to retrieve will in most casesbe low.

How to find the optimal signature size is an issue when using signatures, and the size depends
on several factors, including the number of candidate documents. A large signature reduces the false
drop rate, but increases the size of the signature file, whichhas to be read in its entirety for all queries.

In the example above, we assumed that the signatures were stored in an SSF. Another alternative
is to use BSSF. In this case, the signature files would occupy the same amount of disk space, but on
average, only half of them had to be read to answer a query. This might at first seem like an advantage,
but in practice, accessing extra files implies large overheads, so BSSF would not be beneficial with a
small number of signatures as in this example.

7.1.4 Storing Signatures in the OIDX

In a write-optimized system, object retrieval can become a bottleneck. This bottleneck can be reduced
by including the object’s signature in the OIDX. In Vagabond, the OIDX is updated every time an
object is modified, and if we store the signature in the object’s object descriptor (OD) in the OIDX,
the additional signature maintenance cost is only marginal. This is different from traditional systems,
where the signature file has to be updated every time an objectis updated, reducing its effect. In those
systems, a large read to update ratio is necessary if the use of signature should be beneficial.

Perfect-match queries can use the signatures in the OIDX to reduce the number of objects that
have to be retrieved, as only the candidate objects, with matching signature, have to be retrieved.
When the signature is stored in the OD, scan queries can be done efficiently by simply doing a scan
over the relevant part of the OIDX, and only the candidate objects need to be retrieved. Because
the OD is accessed on every object access in any case, the additional signature-retrieval cost is only
marginal.

Optimal signature size is very dependent of data and query types. In some cases, we can manage
with a very small signature, in other cases, for example in the case of text documents, we want a
much larger signature size. It is therefore desirable to be able to use different signature sizes for dif-
ferent object classes. In any case, we have a tradeoff between signature size and additional signature-
maintenance cost. Even though a small signature has only marginal effect on OIDX access cost, using
larger signatures will increase the cost to a significant level.

The maintenance of object signatures implies computational overhead, and is not always required
or desired. Whether to maintain signatures or not can be decided on a per class basis. This is also
the case with which attributes to use when calculating the signature. This information is stored sepa-
rately for each class, in the class descriptor object (see Section 6.2.1). To avoid complex index node
management, all ODs in a physical container have the same signature length.

A more detailed study of performance aspects of storing signatures in the OIDX is presented in
the paper included in Appendix F.

7.1.5 Signature Caching

The signature could also be stored together with the object on disk. In this way, the additional update
cost is small. This is obviously of no use if the signature is discarded from the buffer at the same time
as the object is discarded. However, it is possible to store the signatures of frequently accessed objects
in a signature cache. Because the signature size is small compared to the object size, reducing the
number of objects that fit in the object buffer and instead using the memory for buffering signatures,
can improve the performance.
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The signature cache approach is particularly interesting for page server ODBMSs using physical
OIDs, and in [156] we have shown that in such systems the average object access cost can be signifi-
cantly reduced by the use of a signature cache. Signature caching can also be used in order to reduce
the communication costs in a parallel ODBMS [154].

7.2 Object Compression

To reduce storage space, as well as the amount of disk bandwidth used, objects can be compressed
before they are written to disk. Compression/decompression can be transparent to applications, which
means that compressed objects are decompressed by the server before they are made available to the
applications. In many application areas, for example SSDBs, it is typical to have objects (or tuples)
with a very large number of attributes, of which many of them have null values. By compressing these
objects, it is possible to reduce both storage space and read/write disk bandwidth. Another example
application is text, which can usually be compressed down toless than 50% of the uncompressed size.

The idea of compression in databases is not new, and some workexists, especially in the context
of SSDBs. A more general study and overview of support for compression of data in databases has
been given by Iyer and Wilhite [98]. They also analyze different design options with different data
sets.

In traditional systems, compression has been difficult to employ efficiently. The reason for this is
that the effective compression ratio changes with the contents of the object, so that different versions
of an object can have very different sizes after compression. As it is impossible to know the size of
future versions of a compressed object, it is necessary to reserve as much space as the maximum size
of a compressed object when updating in-place. When using a log-only approach, an object is written
to a new location every time. In this way, a version only needsto occupy as much space as the size of
the compressed version.

Better compression can be achieved if knowledge of the structure of the objects is available. One
example of how easy this can done, is the use of a bit mask for each object, with one bit for every
attribute of the object. A bit is set to zero if the attribute is null, if not, it is set to one. In this way,
attributes with a null value need not to be stored at all. A variant of this technique, a descriptor con-
taining the offset of the start of each non-null field, was used in System R [5] and POSTGRES [199].

Even without knowledge of the object structure, good results can be achieved. In this case, objects
are simply treated as bit streams. To avoid using too much CPUresources, a low cost compression
algorithm should be used, for example run-length encoding.

The fact that compressed data have to be decompressed beforeused, implies that queries access-
ing large amounts of data only to check for a match in one or more attributes can be costly. Without
compression, such queries are usually I/O bound, but can easy become CPU bound if data is com-
pressed. By combining signatures and compression, this problem can be reduced. When signatures
are maintained, perfect-match queries on attributes in large sets of objects can be done efficiently even
without decompressing the objects.

7.3 Summary

In this chapter we have described the use of signatures and data compression. In the past, these
techniques have only had limited success in DBMSs. However,we expect that they can be more
beneficial in a log-only system than in an system based on in-place updating, and in particular, when
used together in such a system.
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Object-Identifier Indexing

In an ODBMS, an object is uniquely identified by an object identifier (OID), which is also used as a
“key” when retrieving the object. As discussed in Section 3.1, OIDs can be physical or logical. In
a log-only ODBMS, objects are never written back to the same place. This means that logical OIDs
have to be used, and an OID index (OIDX) is necessary. The number of objects in a database can
be very large, and a fast and efficient index structure is necessary to avoid OID indexing becoming a
serious bottleneck. This chapter describes an object-index structure suitable for indexing OIDs in a
temporal ODBMS, and provides algorithms for efficient access to the index.

8.1 Contents and Structure of the OID Index

The OIDX contains the necessary information to map from a logical OID to the physical location
where the object is stored. The physical location, togetherwith the timestamp and other administrative
information, are stored in index entries which we callobject descriptors(ODs). A new OD will be
created for each new version of an object, so that for each object, there can be more than one OD in
the OIDX, corresponding to the number of versions of the object.

In general, an ODBMS can manage multiple logical databases.The logical databases can be
represented as one or severalphysicaldatabases. In Vagabond, we use one physical database for each
logical database, and each logical database has a separate index.

An OID is only unique inside one database, thus, object identifiers in different databases will
represent different objects. All database sessions are performed against a certain database, which
database to access is given implicitly, and it is not necessary to contain database identifying informa-
tion in the OID.

As discussed in Section 3.1.2, the OIDX in a traditional system is usually realized as a hash file or
as a multi-way tree structure. In a log-only system, a tree structure is the only reasonable alternative,
since an index node will be rewritten to a new location every time it is updated. If a hash file was
used, an additional tree index on top of it would be necessary. We would then effectively end up with
a tree structure anyway. The same is the case if we wanted to use the direct mapping technique. For
this reason, all index structures considered in this chapter are variants of multi-way trees.

We will in the rest of this section describe the structure andcontents of the OIDs and ODs in
Vagabond.
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Figure 8.1: OIDX with containers.

8.1.1 Object Identifiers in Vagabond

In Vagabond, an OID is composed of three parts:

1. SGID: Server group identifier. TheSGID is the identifier of the server group (see Section 6.4)
where the object was created.

2. CONTID:Container identifier. TheCONTID identifies the container the object belongs to (see
below), similar to a file in other DBMSs.

3. USN:Unique serial number. Each object created on a particular serverSGIDand to be included
in containerCONTIDgets aUSNwhich is one larger than the previousUSNallocated in this
container.

The reasons for including aSGIDand anUSNin the OID should be obvious, but the rationale behind
theCONTIDneeds some further elaboration.

In many page server ODBMSs, the objects are stored in containers, also called files, or relations
(for example Objectivity, see Section 3.1). Which container to put an object in, is decided when
the object is created, and this decision is often made according to some clustering strategy (see Sec-
tion 3.3). In a traditional ODBMS, a part of the OID is often used to identify in which container the
object is stored (see Section 3.1).

To benefit from the log-only approach, objects can not be stored in distinct files or clustered
together in the same way as is beneficial in a system using in-place updates. This would make it
difficult to achieve long, sequential writes. However, an approach similar to physical clustering of
objects can be used for the OD in the OIDX. Similar to the way object clustering in page servers
reduces the number of pages to read and update, clustering together ODs that are expected to be
accessed together close in time, will reduce the cost of OIDXaccesses. This is achieved by associating
every object in a database with a container (see Figure 8.1).Which container an object belongs to, is
encoded into its OID.

Note that the storage of objects is independent of which containers they belong to (for example,
there is no relation between a segment and a container), the use of containers is only a way to cluster
related ODs.

An object can be migrated from one container to another. If this is done, forwarding information
is stored inside the OD representing the current version in the original container. When a migrated
object is to be retrieved, two OIDX lookups are needed in order to retrieve the OD: one lookup in the
original container, and one lookup in the container the object currently belongs to.
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Field Size (bits)

OID:
SGID 32 (Only present when outside OIDX nodes)
CONTID 32 (Only present when outside OIDX nodes)
USN 64

Physical location 64
Object size 32
Create timestamp 64
End timestamp 64 (Only present when outside the OIDX)
Class identifier (CID) 24
Delta object? 1
Large object? 1
Temporal object? 1
Compressed object? 1
Inlined object? 1
First version? 1
Migrated to another server group?1
Migrated to another container? 1
(Signature) Optional field, variable size

Table 8.1: Contents and size of fields in the object descriptor.

In addition to using the containers as a way to cluster the ODsof objects that are expected to be
accessed together, but in other ways are unrelated (i.e., different classes), they are also useful as a way
to realize logical collections of objects from the same class, for example sets/relations, bags and class
extents.1 For example, one collection can be stored in one container. When this is done, scans and
queries against these collections can then be executed efficiently. When using signatures as well, it
will for many queries only be necessary to read a small proportion of the objects.

Another interesting use of containers is to have more flexibility in deciding the length of the search
path for ODs. This can be achieved by storing hot-spot objects in small containers (i.e., containers
with only a few objects) to get shorter search and update paths.

8.1.2 Object Descriptor Structure

The contents of an OD are summarized in Table 8.1, together with the size of the individual fields
(Fields occupying one bit are used for boolean values).

The ODs are stored both in the OIDX and together with the objects in the segments. The reason
for storing them in the segments as well, is to help identifying objects during cleaning, and it also
works as a kind of write-ahead logging of ODs, in order to avoid synchronous updates of the OIDX
at commit time.

The information in the OD gives a high degree of flexibility and efficiency, and even though it
contains many fields, most of them can be stored in a compact way, many of them occupying only
one bit. As will be described later in this chapter, theSGID and theCONTID are given implicitly

1A class extent is a collection of all the objects of a certain class in a database.
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when stored in the OIDX, so they need not to be stored. In addition, theUSNs of the ODs stored in
one index node will be from a limited integer range, so that prefix compression can be used. When
in main memory, and outside an index node, theCONTIDmust also be included in the OD. ODs for
objects from other server groups are treated as a special case, so that theSGID is only used for the
“remote” ODs. We will now describe in detail the contents andfunction of these fields.

Physical Location

This is the location of the object in the log. If the object is alarge object, this location is actually the
location of the root of the subobject index of the object (seeSection 8.5.2). If the physical location is
NULL, but the OD contains a valid timestamp, this OD is a tombstone OD (the object is deleted, but
previous versions exist).

If an object is moved, for example during cleaning, the physical location in its OD has to be
updated.

Object Size

All objects smaller than a certain threshold are written as one contiguous object, while objects larger
than this threshold are segmented into subobjects, and a large object index is maintained for each of
these large objects. Theobject sizefield in the OD is the size of a small object when in the log.

If the object is compressed, the actual size can be larger theobject size. In the case of fixed-size
objects, the size of the uncompressed object can be found from the class-descriptor object. If it is a
variable-sized object, the size is stored together with thecompression information in the compressed
version of the object.

In the case of large objects, the object-size field is not used(if necessary, the object size can be
found from the subobject index). Note that the fact that only32 bits is used to store the object size
only restricts the maximum size of a “small object”, large objects can be larger than this.

Create Timestamp

This is the commit time of the transaction that created this version. Each transaction needs distinct
timestamps, so a very fine timestamp granularity has to be used. A 64 bit timestamp is more than what
is actually needed, but a 32 bit timestamp is not sufficient, and using a size between 32 and 64 bits is
not efficient.

Timestamps with the most significant bit set are reserved forthe case when a transaction identifier
is used instead of the timestamp in the OD. This will be further explained in Chapter 12.

End Timestamp

The end timestamp is the time when the next version was created, or the time of deletion in case
there are no new subsequent versions. The create and end timestamps give the interval an object was
valid. If the OD is the OD of the current version of an object, the end timestamp is NOW, which is
represented by the value NULL.

When in the OIDX, the end timestamp is given implicitly from the create timestamp in the OD
of the next version of the object. This OD will in most cases reside on the same index node, so it
is not necessary to store it here. However, when the OD is outside the OIDX,2 the end timestamp is

2This also includes the PCache, to be presented in Chapter 9, where the ODs also include the end timestamp.
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included. This makes certain operations and buffering of ODs more efficient (see Section 12.2.5).

Delta Object

Delta object is set to true if this is a delta object (see Section 6.3.5).

Large Object

This is true if this version of the object is a large object. Anobject can be a “plain data object” as well
as a special objects (for example an index, as described in Section 6.2). If it is a special object, the
relevant information is stored in the object’s class descriptor (CDO).

Temporal Object

Temporal object is set to true if this is an object where we want to keep old versions when the object
is modified or deleted. This is decided for each object at object creation time, but can be changed
later (although this is not always a good idea, for example, this must be done with care with respect
to cleaning).

It should be noted that this information could also be storedin the class-descriptor object. In that
case, all objects in a class are either temporal or not. Whichapproach to use depends on whether
orthogonality with respect to temporality is desired or not.

Compressed Object

In many cases, it is worth using some extra CPU cycles to try toreduce the size of an object before
storing it in the log (see Section 7.2). An object is only stored compressed if it is beneficial, and in
this case, compressed object is set to true.

This field is not used for large objects, where subobjects areindependently compressed. The
compression information is stored in separate subobject descriptors, which will be described in Sec-
tion 8.5.2.

Class Identifier

In Vagabond, information about a class is stored in a class descriptor object (CDO) (see Section 6.2.1).
The class identifier (CID) in an OD is actually the OID of the CDO of the class that the object belongs
to.

It is important to note that the class identifier is a temporalproperty of an object, it can change
during the lifetime of the object. With class migration, an object can belong to different object classes
at different points in time.

The number of classes, and as a consequence, the number of CDOs, is assumed to be much smaller
than the number of objects, so we can manage with a smaller size of the CID than the size of the OID.
The class, and the description of it, is global for a database, so there is no need to use aSGID. The
CONTID is also given implicit, we assume the ODs of the CDOs are stored in a separate container.
The size of the class identifier is 24 bits, enough to represent over 16 million object classes in one
database.
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Signature

This optional field contains the object’s signature (see Section 7.1.4). The signature field can have
variable-length size, if present. Information on signature maintenance and signature size is stored in
the CDO.

Inlined Object

In total, 12 bytes in the OD are used to store the physical location and size of an object. If the size of
the object is less than 12 bytes, it is better to store it in theOD instead, in the physical location and
object size fields. We call this aninlined object. Up to 11 bytes is used for the object, while the last
byte is used to store the length of the inlined object.

Even though it is also possible to use the signature field for this purpose, that would complicate
signature access queries, because the signature would haveto be created on the fly every time.

First Version

This bit is set in the OD of the first version of an object. In some temporal operations, this can be
utilized to avoid index accesses when we have this OD in main memory.

Migrated to Another Server Group

An object can migrate from the server group where it was created to another server group. In this case,
themigrated to another server groupis set to true, and the server identifier of the new server is stored
in the physical location field. If the object is migrated a second time, only the OD on the server on
which it was created will be updated. In this way, only one indirection is needed. By caching remote
ODs on a server, this will only infrequently require networktraffic.

Migrated to Another Container

Similar to migration to another server, an object can be migrated to another container. The new
container identifier is stored in the physical location field. In the case the object is migrated a second
time, only the OD for the first container will be updated (although it can be wise to update both, to
avoid problems with ongoing updates). In this way, only one indirection is needed, similar to the case
of server group migration.

8.2 Declustering

One database can be distributed over several server groups (see Section 6.4). In this case, we use
one OIDX for each server, and this OIDX indexes the objects stored on this server. In the case of
a multi-server system, the OID, which contains the server group identifier, is used to identify which
server group to access in order to retrieve an object.

In the case of a server group (see Section 6.4), where data is declustered over the servers in the
group, the declustering strategy (for example hashing of OIDs), is used to determine which server in
the server group stores that object. In this way, the OIDX is implicitly partitioned.

Figure 8.2 illustrates a distributed system with server groups. In this configuration, we have 4
server groups, and each server group consists of 8 servers. Even though all server groups in this
configuration contain the same number of servers, this need not be the case in general. Objects in
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Figure 8.2: Distributed system, with server groups and servers.

one server group are declustered over the servers accordingto the hash value of their unique serial
numbers. If we want to access an object with an OID whereSGID = 2, CONTID = 425, andUSN = 84623, the server group to access is server group 2, and the actual server in the server group
is 84623 MOD 8 = 7. We emphasize that the OIDX of this serveronly indexes the objects that have
been created in this server group, i.e.,SGID= 2, andhaveUSNMOD 8 equal to 7.

When indexing ODs of temporal objects, it is possible that the simple hashing strategy used in this
example is not sufficient, and that other declustering schemes can be useful. This will be discussed in
Section 11.

8.3 Temporal OID Indexing

In Vagabond, we use one OD for each version of an object (two ODs for migrated objects). The OIDX
has to support access to ODs of current as well as historical versions of the objects, and we consider
the following requirements as very important for a temporalOIDX in Vagabond:� Support for temporal data, while still having index performance close to a non-temporal (one-

version) DBMS for non-temporal data. Even if the use of otherkinds of indexes could give
better support for temporal operations, we believe efficient non-temporal operations to be cru-
cial, as they will still be the most frequent operations.� Efficient object-relational operations. This is expected to be achieved by the use of containers.� Easy migration of partitions of the index to tertiary storage.

Before we present our temporal OIDX, we take a closer look at some characteristics of OIDs
and OID search, and analyze the following four alternativesto OID indexing in atransaction-time
temporal ODBMS:

1. One index, which indexes ODs of current as well as historical versions of the objects.
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2. One index for ODs of current versions, with links to the ODsof historical versions.

3. Nested-tree index, which is one index withversion subindexes.

4. Two separate indexes, one for ODs of current versions, andone for ODs of historical versions.

8.3.1 Characteristics of OIDs and OID Search

When considering appropriate index structures and operations on these indexes, it is important to keep
in mind the properties of an OID:� The keys in the index, the OIDs, are not uniformly distributed over a domain as keys commonly

are assumed to be. If we assume the unique part of an OID to be aninteger, new OIDs are
in general assigned monotonically increasing values inside a container. In this case, there will
never be inserts of new key (OID) values between existing keys (OIDs) in the container. In
addition, OIDs will be clustered, in one cluster for each container.� If an object is deleted, the OID will never be reused.

In a tree-based non-temporal OIDX, new entries will be addedappend-only. By combining the knowl-
edge of the OIDX properties and using tuned splitting, whichwill be described in Section 8.4.1, an
index space utilization close to 1.0 can be achieved. If container clustering is used, however, inserts in
between entries occur, and space utilization will decrease. This can be avoided by using a hierarchy
of multi-way tree indexes, as will be shown later.

Without container clustering, index accesses will mostly be for perfect match, there will be no
key-range search (in this case a range of OIDs). With container clustering, there will be two search
classes: search for perfect match during object-navigation queries, and search for all entries in one
container in the case of a container scan. Accessing objectsin a container will often result in additional
navigational accesses to referenced objects. It is important to remember that there will in general be
no correlation between OID and an object-key attribute (if defined), so that an ordinary object key-
range search will not imply an OID-range search in the OIDX. If value-based range searches on keys
(or other attributes in objects) are frequent, additional secondary indexes should be employed, for
example B+-trees or temporal secondary indexes. In this case, the OIDs(and time in the case of
temporal queries) resulted from the key search will be sorted and then used to access the objects by
lookups in the OIDX.

In a temporal ODBMS, the existence of object versions increases the complexity. For example,
we need to be able to efficiently retrieve ODs of historical aswell as current versions of objects, and
support time-range search, i.e., retrieve all ODs for objects valid in a certain time interval. To do this,
we need a more complex index structure than what is sufficientfor a non-temporal ODBMS.

8.3.2 One Index Structure

If only one index is used, we have the choice of using a composite index, which is an extension of the
tree-based indexes used in non-temporal ODBMSs, and using one of the general multiversion access
methods.
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Figure 8.3: One-index structure using the concatenation ofOID and commit time,OIDkTIME, as
the index key.

Composite Index

With this alternative, we use the concatenation of OID and commit timeOIDkTIME as the index
key, as illustrated in Figure 8.3. By doing this, the ODs of the different versions of an object will
be clustered together in the leaf nodes, sorted on commit time. As a result, search for the OD of the
current version of a particular object as well as retrieval of ODs for objects created during a particular
time interval can be done efficiently.

This is also a useful solution if versioning is used for multiversion concurrency control as well.
In that case, both current andrecentobjects will be frequently accessed. It is also possible that many
of the future applications of temporal DBMS will access moreof the historical data than has been the
case until today, something that might make this alternative useful in the future. However, there are
two serious drawbacks with this alternative:

1. Even in an index organized in containers, leaf nodes will contain a mix of current and historical
ODs. The ODs of current versions are not clustered together,something that makes a scan over
the ODs of current versions inefficient.

2. An OIDX is space consuming, a size in the order of 20% of the size of the database itself is
not unexpected [62]. In the case of migration of old versionsof objects to tertiary storage, it
is desirable, and in practice necessary, that parts of the OIDX itself can be migrated as well to
avoid the need for large amounts of disk space for the OIDX of the migrated objects. This is
difficult when current and historical versions reside on thesame leaf pages.

Temporal OID Indexing in POST/C++. One temporal ODBMS using a composite OIDX is the
POST/C++ temporal object store [202], which is based on the Texas object store [189]. In POST/C++,
objects are indexed with physical OIDs, and a variant of the composite-index structure is used to index
historical versions. Because of the use of physical OIDs, a new object is created to hold the previous
version when an object is updated. After the previous version has been copied into the new object, the
new version is stored where the previous object had previously resided. A positive side effect of doing
it this way, is that current and historical objects are separated, and that clustering does not deteriorate.

To be able to access the historical versions, a separate B+-tree-based history index is used. This
index uses the OID of the current-version object, concatenated with time, as the index key. The leaf
node entry is the OID of the current version of the object, thetime interval where this version was
valid, and the OID of the historical version. The location ofthe historical version is given through the
OID in the leaf node.



www.manaraa.com

82 CHAPTER 8. OBJECT-IDENTIFIER INDEXING

In a database using physical OIDs, this hybrid index structure is not a bad choice. By doing it
this way, current versions will still be clustered together, and having the historical index separated
from the current index (in this case no index), makes it easier to migrate historical objects to tertiary
storage. The temporal index, on the other hand, can not easily be migrated.

Use of General Multiversion Access Methods

Using one of the general spatial, multidimensional, or multiversion access methods is also an alter-
native. However, considering the indexing problem simply as spatial/multidimensional indexing with
the two dimensions OID and time will not be efficient. An object version is not only valid at a certain
time (a point in the multidimensional space), but in a certain time interval (until the next version is
created). In addition, a lookup for the current version of anobject can be difficult with these index
approaches, because time is a constantly expanding dimension. Multiversion access methods are more
suitable, but the existing methods have drawbacks. We will here consider three of the most interest-
ing methods: the TSB-tree [132],3 R-tree [84], and LHAM [143].4 TSB-trees and R-trees both have
efficient support for time-key range search, while LHAM has avery low update cost. However, each
of these access methods has drawbacks:� LHAM is of limited use for OID indexing, because it can have a high lookup cost when the

current version is to be searched for. As this will be a very frequently used operation, LHAM is
not suitable for our purpose. In addition, which access method to use in the index components
is still an issue.� When indexing ODs, most queries will be OID lookups, and in this case support for key-range
search is of little use.� R-trees are best suited for indexing data that exhibits a high degree of natural clustering in
multiple dimensions [178]. This is not the case when indexing ODs, and one of the results is a
high degree of overlap in the search regions of the non-leaf nodes. Although asegment R-tree
can reduce this problem, it will have a higher insert cost [178]. The fact that we do not know
the end-time of a new OD further complicates the use of an R-tree.� Using a TSB-tree or segment R-tree increases the storage space because some entries are resi-
dent in more than one node.� In the TSB-tree, heuristics have to be used to determine whento split by time and when to split
by key, and in R-trees, heuristics have to be used to determine bounding rectangles. This makes
the performance vulnerable to changing access patterns.

TSB-trees and R-trees have both good support for time-key range search, and make index partitioning
possible. However, when indexing ODs, most queries will be OID lookups, and when OID is the
key, support for key-range search is of little use. Even if the use of TSB- or R-trees could give
better support for temporal operations, we believe efficient non-temporal operations to be crucial, as
they will probably still be the most frequently used operations. These multiversion access methods
will increase storage space and insert cost considerably, and this contradicts our important goal of
supporting temporal data, while still having index performance close to a non-temporal ODB. As

3There are also other B-tree-based temporal indexes, including the Write-Once B-tree, the Persistent B-tree and the
Multiversion B-tree, but they do not support migration of historical data [178].

4See description in Section 5.4.3.


